Automation \& Sensing

Selection Guide 242
Discrete Input Barriers 244
EB3C Discrete Input Barriers 244
EB3N Discrete Input Barrier. 254
Discrete Output Barriers 259
EB3L Discrete Output Barriers 259
Switches and Pilot Devices 267
General Information 273
www.IDEC.com/barriers

Barriers

Selection Guide

Discrete Output Barrier

Model	EB3L-**AN	EB3L-**DN
Appearance		
Page		259
Ratings	UL: Class I, II, III Div1 / Group A, B, C, D, E, F, Class I, Zone 0 / [AExia] II C FM: Class I, II, III Div1 / Group A, B, C, D, E, F, PTB (ATEX): Class I, Zone 0 / [[AExia] II [Exia] IIC: Gas vapor II(1)D [Exia] IIIC: Dust PTB (IEC-Ex) [Exia] IIC [Exia] IIIC COST: Ex ia Ga IEC Ex: [Exia] IIC TIIS: Discrete output barrier [Exia] II C NK: [Exia] II C KCS: [Exia] II C, [Exia D] KR: [Exia] IIC, [Exia] III C (pending)	and G and G
Degree of Protection	IP20	IP20
Number of Channels	1, 2, 3, 5, 6, 8, 10	1, 2, 3, 5, 6, 8, 10, 16
Power Voltage	100 to 240V AC (UL rating: $100 \sim 120 \mathrm{~V}$ AC)	24V DC
Input	Transistor input (sink) Transistor input (source)	Transistor input (sink) Transistor input (source)
Connection	Screw Terminal	Screw Terminal, Connector
Mounting	35-mm-wide DIN rail Panel mounting	35-mm-wide DIN rail Panel mounting
Size (excluding projections)	$\begin{aligned} & 42 \mathrm{~W} \times 75 \mathrm{H} \times 77.5 \mathrm{D}(1 \text { channel }) \\ & 65 \mathrm{~W} \times 75 \mathrm{H} \times 77.5 \mathrm{D}(2,3 \text { channels }) \\ & 110.5 \mathrm{~W} \times 75 \mathrm{H} \times 77.5 \mathrm{D}(5,6,8 \text { channels }) \\ & 171.5 \mathrm{~W} \times 75 \mathrm{H} \times 77.5 \mathrm{D}(8,10 \text { channels }) \end{aligned}$	$\begin{aligned} & 42 \mathrm{~W} \times 75 \mathrm{H} \times 77.5 \mathrm{D}(1 \text { channel) } \\ & 65 \mathrm{~W} \times 75 \mathrm{H} \times 77.5 \mathrm{D}(2,3 \text { channels) } \\ & 110.5 \mathrm{~W} \times 75 \mathrm{H} \times 77.5 \mathrm{D}(5,6,8 \text { channels }) \\ & 171.5 \mathrm{~W} \times 75 \mathrm{H} \times 77.5 \mathrm{D}(8,10,16 \text { channels (common)) } \end{aligned}$
Weight (approx.)	360 g (EB3L-S10SAN)	360g (EB3L-S16CSDN)

Pilot Light and Miniature Pilot Light

Barriers

Intrinsically Safe: EB3C Discrete Input Barriers

Key features:

- Applicable Standards IEC60079 compliant
Dry-contact switches can be connected to the EB3C
- 8 - and 16 -circuit types are available in common wiring types, ideal for connection to PLCs (DC voltage only)
- Universal AC power voltage (100 to 240 V AC) or 24V DC power (UL rating: 100~120V AC)
- No grounding required
- IDEC's original spring-up terminals minimize wiring time
- Installation: 35-mm-wide DIN rail mounting or direct screw mounting
- Global usage USA: UL/FM Europe: CE marking, Global: IECEx ATEX
Japan: TIIS
China: COST
Korea: KCs
Ship class: NK (Japan), KR (Korea pending)

Entity Barrier Parameters

$\mathrm{Ta}=60^{\circ} \mathrm{C}, \quad U \mathrm{~m}=250 \mathrm{~V},(\mathrm{Um}=125 \mathrm{~V}$ UL only) $, \quad \mathrm{U} 0=13.2 \mathrm{~V}, \quad I 0=14.2 \mathrm{~mA}, \quad \mathrm{P} 0=46.9 \mathrm{~mW}$ at each channel $\mathrm{Pn}-\mathrm{Nn} \mathrm{lo}=227.2 \mathrm{~mA}, \quad \mathrm{Po}=750 \mathrm{~mW}$ at max 16 channels $\mathrm{Pn}-\mathrm{Nn}$

Io(mA)	14.2	28.4	42.6	56.8	71.0	85.2	99.4	113.6	127.8	142.0	156.2	170.4	184.6	198.8	213.0	227.2	Combined
Po(mW)	46.9	93.8	140.6	187.5	234.3	281.2	328.1	375.9	421.8	468.7	515.5	562.4	609.2	656.1	702.9	750	Lo(mH)
	0.67	0.65	0.63	0.61	0.59	0.57	0.55	0.53	0.51	0.49	0.47	0.44	0.42	0.39	-	-	1.0
Co $(\mu \mathrm{F})$	0.79	0.77	0.76	0.75	0.73	0.72	0.70	0.69	0.67	0.66	0.64	0.62	0.61	0.59	0.57	0.55	0.5
	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.93	0.92	0.91	0.90	0.88	0.87	0.86	0.85	0.84	0.2

Note 1 Added to above table, the next values combined Lo and Co are allowable;

Io(mA)	14.2						28.4						227.2					
Lo(mH)	175*	87.5	30.0	2.5	0.55	0.25	43.5*	21.5	20.0	3.5	0.43	0.25	0.68*	0.34	0.68	0.6	0.22	0.13
Co($\mu \mathrm{F}$)	0.90*	0.45	0.33	0.54	0.77	0.90	0.90*	0.45	0.30	0.48	0.80	0.90	0.90*	0.45	0.45	0.49	0.80	0.90

TIIS, NK only $\mathrm{Ta}=60^{\circ} \mathrm{C}$, Um=250V

	1 ch	16 ch
Seperate	Common 16	
Uo	13.2 V	13.2 V
Io	14.2 mA	227.2 mA
Po	46.9 mW	750 mW
Co	$0.47 \mu \mathrm{~F}$	$0.365 \mu \mathrm{~F}$
Lo	87.5 mH	0.425 mH

Note 2 The intrinsic safe apparatus and wirings shall be accordance to following formulas; for example: $\mathrm{Ui} \geq \mathrm{Uo} \quad \mathrm{Ii} \geq \mathrm{lo} \quad \mathrm{Pi} \geq \mathrm{Po} \quad \mathrm{Ci}+\mathrm{Cc} \leq \mathrm{Co} \quad \mathrm{Li}+\mathrm{Lc} \leq \mathrm{Lo}$
*: Therefore, the values are allowable only at $\mathrm{Li} \leq 1 \% \mathrm{Lo}$ and $\mathrm{Ci} \leq 1 \% \mathrm{Co}$ of the intrinsic safe apparatus. (In the case of 50% of Co and Lo parameters are applicable,the maximum capacitance allowed shall not be more than $\mathrm{Co}=1 \mu \mathrm{~F}$ for IIB and $\mathrm{Co}=600 \mathrm{nF}$ for IIC.)

Dry Contact Switches

Dry-contact switches can be connected to the EB3C.

Spring-up Fingersafe Terminals Reduce Wiring Time

Common Wiring for PLC Inputs

8 - and 16 -circuit types are available in common wiring types, ideal for connection to PLCs (DC voltage only).

Connector Type

MIL connector on the non-hazardous side

- Easy connection to PLCs
- Wiring reduced
- Various 20-pin MIL connectors can be connected

Ratings				See Certification Numbers table below	
Degree of Protection				IP20 (IEC60529)	
	Discrete Input Barrier			Safe indoor place (non-hazardous area)	
Non-intrinsically Safe Circuit Maximum Voltage (Um)				250V AC 50/60Hz, 250V DC 125 V AC $50 / 60 \mathrm{~Hz}, 125 \mathrm{~V}$ DC (UL rating)	
	Wiring Method			1-channel Separate Wiring	16-channel Common Wiring
	Rated Operating Voltage			$12 \mathrm{~V} D \mathrm{C} \pm 10 \%$	
	Rated Operating Current			$10 \mathrm{~mA} \mathrm{DC} \pm 20 \%$	
	Contact Configuration			1NO	
	Rated Insulation Voltage (Ui)			250V AC (UL rating: 125V AC), 125V DC	
	Thermal Current (Ith)			3A (common terminal: 8A)	
		Contact	Resistive Load	AC: $750 \mathrm{VA}, ~ \mathrm{DC}: 72 \mathrm{~W}$	
		Allowable Power	Inductive Load	AC: $750 \mathrm{VA}(\cos \varnothing=0.3$ to 0.4$)$ DC: 48 W ($\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)	
			Resistive Load	250V AC	DC 3A
	$\begin{aligned} & \stackrel{H}{3} \\ & \frac{2}{Z} \end{aligned}$	Rated Load	Inductive Load	$\begin{aligned} & 250 \mathrm{~V} \text { AC } 3 \\ & 24 \mathrm{~V} \text { DC } 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \varnothing=0.3 \text { to } 0.4) \\ & 7 \mathrm{~ms}) \end{aligned}$
	$\underset{\sim}{\star}$	Minimum A	licable Load	0.1 V DC,	eference value)
		Contact Res	tance	$50 \mathrm{~m} \Omega$ max	(initial value)
		ON Time		12 ms max	rated voltage)
		OFF Time		10 ms max	rated voltage)
		Mechanical		$\begin{aligned} & 20,000,000 \\ & 18,000 \text { ope } \end{aligned}$	tions minimum (at /hour, without load)
		Electrical Lif		$\begin{aligned} & 100,0000 \\ & \text { (at 1,800 } \end{aligned}$	s minimum ns/hour, rated load)
		Short-circuit	Protection	None	
		Rated Voltage		24V DC	
		Maximum V	Itage	30V DC	
		Maximum C	rrent	100 mA (co	type: 15 mA)
		Leakage Cur		0.1 mA ma	
		Voltage Drop		1.5 V maxim	
		Clamping Vo	tage	33 V (1W)	
		Inrush Curre		0.5A maxim	sec)
		ON Time		0.1 ms max	(resistive load)
		OFF Time		0.4 ms (typ	esistive load)
		Short-circuit	Protection	None	

EB3C General Specifications
 B3C General Specifications

	AC	DC
Rated Voltage	100 to 240 V AC (UL rating: 100~120V AC)	24V DC
Allowable Voltage Range	$\begin{aligned} & 85 \text { to 264V AC } \\ & \text { (UL rating: } 85 \text { ~ } 125 \mathrm{~V} \text { AC) } \end{aligned}$	21.6 to 26.4V DC
Rated Frequency	$50 / 60 \mathrm{~Hz}$ (allowable range: $47 \text { to } 63 \mathrm{~Hz}$	-
Inrush Current	$\begin{aligned} & 10 \mathrm{~A}(100 \mathrm{VAC}) \\ & 20 \mathrm{~A}(200 \mathrm{VAC}) \end{aligned}$	10A

Specifications

Part Numbers

Accessories

	Item		Part Number
	DIN Rail	BAP1000	Steel (1m long, 7.5mm high)
	BAA1000	Aluminum (1m long, 10.5mm high)	
	EnL6 Clip	Medium DIN rail end clip	
S.	Static Electricity Caution Plate	EB9Z-N1	Polyester 20 $(\mathrm{W}) \times 6(\mathrm{H}) \mathrm{mm}$

Circuit Diagrams

Internal Circuit Block Diagrams

AC Power, Relay Output Type

DC Power, Transistor Output Type

Connector Wiring, Sink Output Type

Wiring Examples

External Wiring Examples

Transistor Output Type (Ex.: EB3C-T06AN)

Note: On the sink/source transistor output type, terminals A can be used as a positive common line.

Relay Output Type (Ex.: EB3C-R06AN)

Transistor Sink Output Type (Ex.: EB3C-T08CKDN)

Transistor Source Output Type (Ex.: EB3C-T08CSDN)

Relay Output Common Wiring Type (Ex.: EB3C-R016CDN)

Barriers

Connector Wiring Terminal Arrangement

EB3C-T16CKD-CN (Sink)

EB3C-T16CSD-CN (Source)
CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16

EB3C-T16CKD-CN		FC4A-N16B3		EB3C-T16CSD-CN		FC4A-N16B3	
Terminal	Output	Input	Terminal	Terminal	Output	Input	Terminal
20	A1	10	20	20	A1	10	20
19	A9	110	19	19	A9	110	19
18	A2	11	18	18	A2	11	18
17	A10	111	17	17	A10	111	17
16	A3	12	16	16	A3	12	16
15	A11	112	15	15	A11	112	15
14	A4	13	14	14	A4	13	14
13	A12	113	13	13	A12	113	13
12	A5	14	12	12	A5	14	12
11	A13	114	11	11	A13	114	11
10	A6	15	10	10	A6	15	10
9	A14	115	9	9	A14	115	9
8	A7	16	8	8	A7	16	8
7	A15	116	7	7	A15	116	7
6	A8	17	6	6	A8	17	6
5	A16	117	5	5	A16	117	5
4	+V	COM	4	4	-V	COM	4
3	NC	COM	3	3	NC	COM	3
2	COM	NC	2	2	COM	NC	2
1	NC	NC	1	1	NC	NC	1

Note: The wiring in dashed line does not affect the operation of the EB3C.
Applicable connector is IDEC JE1S-201.
Output power for PLC outputs is supplied by the EB3C, therefore the PLC output does not need an external power supply.

Barriers

Wiring Example of Intrinsically Safe External Inputs

1. Common Wiring (Maximum 16 circuits)

All input lines are wired to a common line inside the intrinsically safe switch (one common line per intrinsically safe circuit).

Some input lines are wired to a common line inside the intrinsically safe switches, while others are outside switches one common line per intrinsically safe circuit).

All input lines are wired to a common line outside the intrinsically safe switch (one common line per intrinsically safe circuit).

2. Separate Wiring

Each input line of the EB3C makes up one independent intrinsically safe circuit.

Diagram Symbols

Serial-Parallel Connection of Switches

Notes

- As shown in the diagram on the left, the required number of "contacts in one switch" (3 contacts in the example at left) can be added to the "contacts in one switch" connected to one input channel.
- Similarly, a required number of "contacts in one switch" can be added to a common line connected to multiple input channels.
- The capacitance and inductance of the added "contacts in one switch" must be included in the calculation of the wiring capacitance and inductance in "Precautions for Operation, 5. Wiring for Intrinsic Safety, (7)".
- In addition, a required number of contacts can be added in the enclosure of "contacts in one switch." In this case, however, do not include the capacitance and inductance in the calculation of the wiring capacitance and inductance. Instead, make sure that the internal capacitance (Ci) and internal inductance (Li) are within the values shown in the table "Switch Explosion-Protection Specifications (Japan only)"'

Recommended Connector Cable for Connector Types

Description	No. of Poles	Length (m)	Part Number	Shape	Applicable Type
With Shield I/O Terminal Cable Without Shield	20	0.5	FC9Z-H050A20		IDEC MicroSmart I/O Module
		1	FC9Z-H100A20		
		2	FC9Z-H200A20		
		3	FC9Z-H300A20		
		0.5	FC9Z-H050B20		IDEC MicroSmart I/O Module
		1	FC9Z-H100B20		
		2	FC9Z-H200B20		
		3	FC9Z-H300B20		
Cable with Crimping Terminal		1	BX9Z-H100E4		Screw Terminal
		2	BX9Z-H200E4		
		3	BX9Z-H300E4		
40-pin Cable for PLC		1	BX9Z-H100B		Mitsubishi A Series Input Module (positive common) EB3C-T16CKD-CN
		2	BX9Z-H200B		
		3	BX9Z-H300B		

FC9Z-H $\square \square \square$ A, FC9Z-H $\square \square \square$ B Internal Connection

FC9Z-H $\square \square \square$ E4 Internal Connection

Fujitsu Connector	IDEC Connector
FCN-367J024-AU/F	JE1S-201

(Tannantinn CiAal
(Tammantion Cidal

(inal

IDEC Connector JE1S-201

Y-shaped Compresion Terminal
(Marking Tube No.)

Installing the EB3C Intrinsically Safe Barriers

1. The EB3C can be installed in any direction.
2. Install the EB3C intrinsically safe barrier in a safe area (non-hazardous area) in accordance with intrinsic safety ratings and parameters. To avoid mechanical shocks, install the EB3C in an enclosure which suppresses shocks.
3. When installing or wiring the EB3C, prevent electromagnetic and electrostatic inductions in the intrinsically safe circuit. Also prevent the intrinsically safe circuits from contacting with another intrinsically safe circuit and any other circuits.
Maintain at least 50 mm clearance, or provide a metallic separating board between the intrinsically safe circuit and non-intrinsically safe circuit. When providing a metallic separating board, make sure that the board fits closely to the enclosure (top, bottom, and both sides). Allowable clearance between the enclosure and board is 1.5 mm at the maximum.
The clearance of 50 mm between the intrinsically safe circuit and non-intrinsically safe circuit may not be sufficient when a motor circuit or high-voltage circuit is installed nearby. In this case, provide a wider clearance between the circuits referring to 5 (3) "Minimum Parallel Distance between the Intrinsically Safe Circuit and Other Circuits."
4. In order to prevent contact between intrinsically safe circuits and non-intrinsically safe circuits, mount EB3C units with terminals arranged in the same direction.

5. Maintain at least 6 mm (or 3mm according to IEC60079-11: 1999) clearance between the terminal of an intrinsically safe circuit and the grounded metal part of a metal enclosure, and between the relay terminal block of an intrinsically safe circuit and the grounded metal part of a metal enclosure.
6. For installing the EB3C, mount on a 35 mm -wide DIN rail or directly on a panel using screws. Make sure to install securely to withstand vibration. When mounting on a DIN rail, push in the clamp completely. Use the BNL6 end clips on both sides of the EB3C to prevent from moving sideways.
7. Excessive extraneous noise may cause malfunction and damage to the EB3C. When extraneous noise activates the voltage limiting circuit (thyristor), remove the noise source and restore the power.

Terminal Wiring

1. Using a $\varnothing 5.5 \mathrm{~mm}$ or smaller screw driver, tighten the terminal screws (including unused terminal screws) to a torque of 0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$ (recommended value).
2. Make sure that IP20 is achieved when wiring. Use insulation tubes on bare crimping terminals.
3. To prevent disengaged wires from contacting with other intrinsically safe circuits, bind together the wires of one intrinsically safe circuit.
4. When the adjacent terminal is connected to another intrinsically safe circuit, provide an insulation distance of at least 6 mm .

Switches in the Hazardous Area

1. A switch contains the switch contact, enclosure, and internal wiring. A switch contact refers to an ordinary switching device which consists of contacts only, such as a pushbutton switch. See below.

Applicable Switches

Control Switches	Push-pull Switches	Pushbutton, Foot, Trigger, Rocker, Grip
	Twisting Switches	Rotary, Selector, Cam, Drum, Thumb wheel
	Lever and Slide Switches	Toggle, Multidirectional, Wobble stick, Lever, Slide switch
Sensing Switches	Displacement Switches	Microswitch, Limit, Magnetic proximity, Door, Reed, Mercury
	Level Switches	Liquid level
	Others	Pressure, Temperature
Note: For installation in hazardous areas and connection to the EB3C, use switches which are certified, approved, or considered to be simple apparatus in relevant standards in each country.	For installation in hazardous areas and connection to the EB3C, itches which are certified, approved, or considered to be simple tus in relevant standards in each country.	

2. When the switch has internal wiring or lead wire, make sure that the values of internal inductance (Li) and capacitance (Ci) are within the certified values.
3. Enclose the switch contact's bare, live part in an enclosure of IP20 or higher protection.
4. Depending on the explosion-protection specifications according to TIIS, the exposed area of the plastic switch operator is limited as follows:
Exia II CT6 (EB9Z-A):
$20 \mathrm{~cm}^{2}$ maximum
Exia II BT6 (EB9Z-A1):
$100 \mathrm{~cm}^{2}$ maximum
5. Attach the certification mark supplied with the EB3C on the EB9Z-A or EB9ZA1 switch (for Japanese applications).
6. When the switch operator of the plastic enclosure has a wider exposed area than the following limits, attach a caution label.

I C: $20 \mathrm{~cm}^{2}$ maximum
II B: $100 \mathrm{~cm}^{2}$ maximum
To prevent electrostatic charges, do not rub the switch surface during operation switch surface during operation.
Use a soft cloth dipped with water for cleaning.

Caution Label Example

7. For the 1 -circuit separate wiring, a resistor to prevent reed switch contact welding and an LED miniature pilot light can be connected in series with the contact. See below. Use the terminal screw of M3 or larger.

Applicable Resistor Ratings

Resistance	100Ω maximum
Rated Wattage	0.5 to 3 W
Type	Metal (oxide) film resistors

IPL1 series LED miniature pilot lights Output Specifications

1. When wiring the output from the EB3C, connect the non-intrinsically safe circuit to terminals A and C. The EB3C output circuit is not equipped with short-circuit protection. If required, provide a protection in the external circuit.

2. Relay Output

Some types of loads generate reverse emf (such as solenoids) or cause a large inrush current (incandescent lamps), resulting in a shorter operation life of output relay contacts. The operation life of contacts can be extended by preventing the reverse emf using a diode, RC, or varistor, or by suppressing the inrush current using a resistor or RL.
Contacts are made of gold-clad silver. When using at a small current and a low voltage (reference value: $0.1 \mathrm{~mA}, 0.1 \mathrm{~V}$), test the contact on the actual circuit in advance.
3. Transistor Output

When connecting a small load, the load may not turn off because of a leakage current, even though the transistor output is turned off. If this is the case, connect a resistor in parallel with the load to bypass the leakage current.

When an excessively high voltage (clamps at $33 \mathrm{~V}, 1 \mathrm{~W}$) or a reverse voltage is applied to the output terminals, the clamping circuit or output transistor may be damaged.

When driving an inductive load, be sure to connect a diode across the load to absorb reverse emf.

Example of Overvoltage Absorption Circuit

4. In the common wiring only types, the output terminals are not isolated from each other.
5. When connecting the connector type EB3C's in parallel, use one power supply to power the EB3C's. Do not connect any wiring to the C1 and C2 terminals.

Wiring for Intrinsic Safety

1. The voltage applied on the general circuit connected to the non-intrinsically safe circuit terminals of the EB3C relay barrier must be 250 V AC, $50 / 60 \mathrm{~Hz}$, or $250 \mathrm{~V} D$ at the maximum under any conditions, including the voltage of the input power and the internal circuit.
2. When wiring, take into consideration the prevention of electromagnetic and electrostatic charges on intrinsically safe circuits. Also, prevent intrinsically safe circuits from contacting with other circuits.
3. The intrinsically safe circuits must be separated from non-intrinsically safe circuits. Contain intrinsically safe circuits in a metallic tube or duct, or separate the intrinsically safe circuits referring to the table below.
Note: Cables with a magnetic shield, such as a metallic sheath, prevent electromagnetic induction and electrostatic induction, however, a non-magnetic shield prevents electrostatic induction only. For non-magnetic shields, take a preventive measure against electromagnetic induction.

Finely twisted pair cables prevent electromagnetic induction. Adding shields to the twisted pair cables provides protection against electrostatic induction.
Minimum Parallel Distance between the Intrinsically Safe Circuit and Other Circuits (mm)

Voltage and Current of Other Circuits	Over 100 A	100 A or less	50 A or less	10 A or less
Over 440V	2000	2000	2000	2000
440 V or less	2000	600	600	600
220 V or less	2000	600	600	500
110 V or less	2000	600	500	300
60 V or less	2000	500	300	150

4. When identifying intrinsically safe circuits by color, use light blue terminal blocks and cables.
5. When using two or more EB3C's to set up one intrinsically safe circuit in the common wiring configuration, interconnect two neutral terminals (N1 through N 10) on each EB3C between adjacent EB3C's in parallel.
6. Make sure that the power of the EB3C and contact are turned off before starting inspection or replacement.
7. When wiring the intrinsically safe circuit, determine the distance to satisfy the wiring parameters shown below. Note that parameters are different
between separate wiring and common wiring
a. Wiring capacitance $\mathrm{Cw} \leq \mathrm{Co}-(\mathrm{Ci}+\mathrm{N} \times 2 \mathrm{nF})$

Co: Maximum external capacitance of the EB3C
Ci : Internal capacitance of the switch
N : \quad The number of switches connected in series or parallel (the number is infinite)
b. Wiring inductance $\mathrm{Lw} \leq \mathrm{Lo}-(\mathrm{Li}+\mathrm{N} \times 5 \mu \mathrm{H})$

Lo: Maximum external inductance of the EB3C
Li: Internal inductance of the switch
N : The number of switches connected in series or parallel (the number is infinite)
c. Wiring resistance $\leq R w$

Rw: Allowable wiring resistance
d. Allowable wiring distance $D(\mathrm{~km})$ is the smallest value of those calculated from the capacitance, inductance, and resistance.

$D \leq \mathrm{Cw} / \mathrm{C}$	$\mathrm{C}(\mathrm{nF} / \mathrm{km}):$ Capacitance of cable per km
$\mathrm{D} \leq \mathrm{Lw} / \mathrm{L}$	$\mathrm{L}(\mathrm{mH} / \mathrm{km}):$: Inductance of cable per km
$\mathrm{D} \leq \mathrm{Rw} / 2 \mathrm{R}$	$\mathrm{R}(\Omega / \mathrm{km}):$ Resistance of cable per km

Note: For the details of wiring the intrinsically safe circuits, refer to a relevant test guideline for explosion-proof electric equipment in each country.

8) Applicable Wire Size

0.5 to $2.0 \mathrm{~mm}^{2}$ (AWG20 to AWG14): two wires

However, one wire for $2.0 \mathrm{~mm}^{2}$ (AWG14)

Mounting Bracket

The following mounting brackets can be used to install the EB3C relay barriers and EB3L lamp barriers on the mounting holes of IBRC contact signal transducer, IBPL pilot relay barrier, and IBZ buzzer.

No. of Channels	Part No.	Dimension (mm)		
		A	B	C
1	EB9Z-K01	28.0	44.0	61.0
2	EB9Z-K02	51.0	59.5	76.0
3	EB9Z-K03	51.0	75.0	91.5
5	EB9Z-K05	97.0	105.0	122.0
6	EB9Z-K06	97.0	120.0	137.0
10	EB9Z-K10	97.0	181.0	198.0

Dimensions

Barriers

EB3N Discrete Input Barrier with Redundant Output

Build a safety system in an explosive atmosphere.

Key features:

Safety Performance Performance level e Category 4

- [Exia] II C
- Ensures safety and machine safety in an explosive atmosphere
- Machine safety system can be built in compliance with IS013849-1 Category 4, Performance level e.
- Safety input devices applicable in any explosive gas and hazardous areas are available.
- Available with auxiliary inputs (5 points) used to monitor the operating status of safety input devices
- Global usage

USA (UL),
Global IEC-Ex,
Europe (ATEX),
Japan (TIIS),
China (COST)
Machine safety: TÜV Rheinland

- No grounding required

Entity Barrier Parameters

$\mathrm{Ta}=60^{\circ} \mathrm{C}, \quad U \mathrm{~m}=250 \mathrm{~V},(\mathrm{Um}=125 \mathrm{~V}$ UL only) $, \quad U 0=13.2 \mathrm{~V}, \quad \mathrm{l}=14.2 \mathrm{~mA}, \quad \mathrm{P}=46.9 \mathrm{~mW}$ at each channel $\mathrm{Pn}-\mathrm{Nn} \mathrm{I}=227.2 \mathrm{~mA}, \quad \mathrm{Po}=750 \mathrm{~mW}$ at max 16 channels $\mathrm{Pn}-\mathrm{Nn}$

$10(m A)$	14.2	28.4	42.6	56.8	71.0	85.2	99.4	113.6	127.8	142.0	156.2	170.4	184.6	198.8	213.0	227.2	Combined Lo(mH)	
Po(mW)	46.9	93.8	140.6	187.5	234.3	281.2	328.1	375.9	421.8	468.7	515.5	562.4	609.2	656.1	702.9	750		
Co($\mu \mathrm{F}$)	0.67	0.65	0.63	0.61	0.59	0.57	0.55	0.53	0.51	0.49	0.47	0.44	0.42	0.39	-	-	1.0	
	0.79	0.77	0.76	0.75	0.73	0.72	0.70	0.69	0.67	0.66	0.64	0.62	0.61	0.59	0.57	0.55	0.5	
	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.93	0.92	0.91	0.90	0.88	0.87	0.86	0.85	0.84	0.2	
	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.1	
Note 1 Added to above table, the next values combined Lo and Co are allowable;																		
Io(mA)	14.2						- 28.4						227.2					
Lo(mH)	175*	87.5	30.0	2.5	0.55	0.25	43.5*	21.5	20.0	3.5	0.43	0.25	0.68*	0.34	0.68	0.6	0.22	0.13
Co($\mu \mathrm{F}$)	0.90*	0.45	0.33	0.54	0.77	0.90	0.90*	0.45	0.30	0.48	0.80	0.90	0.90*	0.45	0.45	0.49	0.80	0.90

TIISI only $\mathrm{Ta}=60^{\circ} \mathrm{C}, \mathrm{Um}=250 \mathrm{~V}$

	1 ch	5 ch
Seperate	Common	
Uo	13.2 V	13.2 V
lo	14.2 mA	227.2 mA
Po	46.9 mW	750 mW
Co	$0.47 \mu \mathrm{~F}$	$0.28 \mu \mathrm{~F}$
Lo	87.5 mH	0.56 mH

Note 2 The intrinsic safe apparatus and wirings shall be accordance to following formulas; for example: Ui $\geq \mathrm{Uo} \quad \mathrm{li} \geq \mathrm{lo} \quad \mathrm{Pi} \geq \mathrm{Po} \quad \mathrm{Ci}+\mathrm{Cc} \leq \mathrm{Co} \quad \mathrm{Li}+\mathrm{Lc} \leq \mathrm{Lo}$
*: Therefore, the values are allowable only at $\mathrm{Li} \leq 1 \% \mathrm{Lo}$ and $\mathrm{Ci} \leq 1 \% \mathrm{Co}$ of the intrinsic safe apparatus. (In the case of 50% of Co and Lo parameters are applicable,the maximum capacitance allowed shall not be more than $\mathrm{Co}=1 \mu \mathrm{~F}$ for IIB and $\mathrm{C} 0=600 \mathrm{nF}$ for IIC.)

Discrete Input Barrier with Redundant Output

2	2NO	Without	Without	Auto reset (Auto start)	EB3N-A2ND
				Manual reset (Manual start)	EB3N-M2ND
2	2NO	5 (1 common)	5NO (1 common)	Auto reset (Auto start)	EB3N-A2R5D
				Manual reset (Manual start)	EB3N-M2R5D

1. A maximum of five monitor contacts from safety input devices can be connected to the auxiliary input terminals. In addition, non-safety input devices can also be connected to the auxiliary input terminals.
2. On auto reset (auto start) models, when the safety condition is met (two safety inputs are both on), safety outputs are turned on automatically Connect the reset (start) input terminals Y 1 and Y 2 together except for the following cases:
When connecting a contactor or force guided relay to the safety output of the EB3N, connect the NC contacts of the contactor or force guided relay to the reset (start) input terminals Y 1 and Y 2 of the EB3N for use as a backcheck input signal.
3. On manual reset (manual start) models, while the safety condition is met (two safety inputs are both on), safety outputs are turned on at the falling edge of the reset switch (start switch) signal (OFF \rightarrow ON \rightarrow OFF) (start off check).
Manual reset (manual start) models have a monitoring function of reset switch contacts (detection of welded contacts). Use NO contacts of a momentary switch for the reset (start) input. When connecting a contactor or force guided relay to the safety output of the EB3N, connect the NC contacts of the contactor or force guided relay to the reset (start) input terminals Y 1 and Y 2 of the EB3N for use as a backcheck input signal.

Selection Guide

1. Selecting the reset (start) function

Auto reset (auto start):
Select this model when connecting safety control devices, such as safety relay modules or safety controllers, to the EB3N safety outputs to set up a safety system, using the reset (start) function of the safety control device.

Select this model when connecting contactors or force guided relays to the EB3N safety outputs to set up a safety system, and a risk assessment on the entire system has not found any safety problem in using auto reset (auto start).
Manual reset (manual start): Select this model when connecting contactors or force guided relays to the EB3N safety outputs to set up a safety system, and a risk assessment on the entire system has found that manual reset (manual start) is necessary.
2. Selecting the auxiliary outputs

Without auxiliary outputs: Select this model when the operating status of safety input devices are not monitored.
With auxiliary outputs: Select this model when the operating status of safety input devices are monitored or when non-safety input devices are also connected.

Specifications

EB3N General Specifications

Rated Power Voltage			24 V DC
Power Voltage Range			20.4 to 26.4V DC
Operating Temperature			-20 to $+60^{\circ} \mathrm{C}$ (no freezing) UL: -20 to $+40^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity			45 to 85% RH (no condensation)
Power Consumption	Without auxiliary output		5.5W maximum
	With auxiliary output		7.0W maximum
Safety Output	Contacts	13-14, 23-24	2NO
	Rated Load	Resistive	30 V DC, 1A
		Inductive	DC-13, 24V, 1A
	Response (rated voltage)	Turn on	100 ms maximum
		Turn off	20 ms maximum
Auxiliary Output	Contacts	$A^{*}-\mathrm{Cl}$	5NO/1 common
	Rated Load	Resistive	$24 \mathrm{~V} D C, 3 \mathrm{~A}$, common terminal 5 A max.
	Response	Turn on	15 ms maximum
	(rated voltage)	Turn off	10 ms maximum
Mounting			DIN rail or panel mounting

EB3N Safety Specifications

Category	4
Performance Level (PL)	e
Mean Time to Dangerous Failure (MTTFd)	100 years
Diagnostic Range	99% minimum

Calculation conditions for MTTFd
$t_{\text {crcle }}$: Mean operation cycle $=1$ hour
$h_{\text {op }}$: Mean operation hours per day $=24$ hours
$\mathrm{d}_{\text {op }}$: Mean operation days per year $=365$ days Note: When $\mathrm{t}_{\text {cylie }}$ is shorter than 1 hour, MTTFd will decrease
*: Channel Numbers: 1 to 5

EB3N Certifications

Certification Organization	Ratings	Certification Number
UL	Class I, Zone 0, [AExia] II C Class I, II, III, Div. 1, Groups A, B, C, D, E, F and G	E234997
PTB (IEC-Ex)	[Exia] II C, [Exia D]	
II (1) G [Exia] II C		
II (1) D [Exia D]	IEC Ex PTB 10.0015	
DTB (ATEX)	Discrete Input Barriers with Redundant Output Switch (EB9Z-A) [Exia] II C Switch (EB9Z-A1) Exia II CT6	TC18753 BT6
TIIS	TExia] IIC	TC15758
CQST		TC15961

Terminal Functions
24V DC Power Y1-Y2 Reset input (Start input) $11-12$ Safety input 1 $21-22$ Safety input 2 N1, N2 Signal ground P*-N3 * Auxiliary input $13-14$ Safety output 1 $23-24$ Safety output 2 A* * C1 Auxiliary output : $^{*}: 1$ to 5

EB3N System Configuration Examples

1:1 connection with a safety input device, compliant with Category 4

Hazardous Area		Non-hazardous Area					- A safety relay module or safety controller is used to set up a safety circuit, using the reset (start) function of the safety relay module or safety controller.
	\square		$\square^{\text {Barrier Safety Output }}$			Safety Contactor	
Safety Input Device	\square			Safety Contactor 3			- The reset (start) function is used to set up a safety circuit, without using a safety relay module or safety controller.

Connection with multiple safety input devices, capable of monitoring up to 5 contact operations, compliant with Category 3
For monitoring operating statuses of safety input devices located in a non-hazardous area

Installing a reset switch in a hazardous area, using auxiliary input and output

Safety Input Devices Connectable to Safety Input Terminals (Examples)

Emergency stop switch:
Safety switch:
(Non-illuminated) XW1E-BV402M-R, XN4E-BL412MRH HS6B-02B05, HS1B-02R

Instructions

Notes for Operation

1. Do not disassemble, repair, or modify the EB3N discrete input barrier with redundant output, otherwise the safety characteristics may be impaired.
2. Use the EB3N within its specification values.
3. The EB3N can be mounted in any direction.
4. Mount the EB3N on a 35 -mm-wide DIN rail or directly on a panel surface using screws. When mounting on a DIN rail, push in the clamp and use end clips to secure the EB3N. When mounting on a panel surface, tighten the screws firmly.
5. Excessive noise may cause malfunction or damage to the EB3N. When the internal voltage limiting circuit (thyristor) has shut down the power due to noise, remove the cause of the noise before powering up again.
6. The internal power circuit contains an electronic fuse to suppress overcurrents. When the electronic fuse has tripped, shut down the power, remove the cause of the overcurrent before powering up again.
7. Use crimping terminals with insulation sheath for wiring. Tighten the terminal screws, including unused terminal screws, to a recommended tightening torque of 0.6 to $\mathrm{N} \cdot \mathrm{m}$ using a screwdriver of $\varnothing 5.5 \mathrm{~mm}$ in diameter.
8. Before inspecting or replacing the EB3N, turn off the power.

Notes for Machine Safety

1. Operate the safety input device to check the EB3N functionality everyday.
2. For safety input devices, such as safety switches or emergency stop switches, connected to the EB3N, use safety standard-compliant devices with direct opening action and 2NC contacts.
3. Do not use the auxiliary input as a safety input.
4. For safety control devices connected with the EB3N, use machine safety standard-compliant devices with a disparity detection function.
5. Use safety inputs and safety outputs in a circuit configuration compliant with safety requirements.
6. To calculate the safety distance, take into consideration the response time of all devices comprising the system, such as the EB3N and safety devices connected to the EB3N.
7. Separate the input and output wiring from power lines and motor lines.
8. When using multiple EB3N discrete input barriers with redundant output, do not connect one switch to more than one EB3N. Use separate switches for each EB3N.
9. To ensure EMC, use shielded cables for safety inputs and auxiliary inputs. Connect the shield to the FG of the control panel on which the EB3N is mounted.
10. For protection against overcurrents, connect an IEC60127-2-compliant 2A fast-blow fuse ($5 \times 20 \mathrm{~mm}$).
11. Evaluate the ISO 13849-1 category and performance level in consideration of the entire system.

Barriers

Safety Notes

1. Install the EB3N in an enclosure capable of protecting against mechanical shocks at a hazardous location in accordance with intrinsic safety ratings and parameters.
2. Install and wire the EB3N so that the EB3N is not subject to electromagnetic and electrostatic induction and does not contact with other circuits. For example, keep a minimum spacing of 50 mm between intrinsically safe and non-intrinsically safe circuits, or provide a metallic separating board between the intrinsically safe circuit and non-intrinsically safe circuit. When providing a metallic separating board, make sure that the board fits closely to the enclosure (top, bottom, and both sides). Allowable clearance between the board and the enclosure is 1.5 mm at the maximum.
When a motor circuit or high-voltage circuit is installed nearby, keep a wider spacing than 50 mm between intrinsically safe and non-intrinsically safe circuits.
3. Keep a minimum spacing of 3 mm between the terminal or relay terminal block of the intrinsically safe circuit and the grounded metal parts of the metal enclosure.
4. Connect the terminals so that IP20 is ensured.
5. To prevent disengaged wires from contacting with other intrinsically safe circuits, bind together the end of wires.
6. Make sure that the voltage of the power supply for the devices connected to the non-intrinsically safe circuit or the internal voltage of such devices does not exceed 250V AC/DC 50/60 Hz (UL rating: 125V AC $50 / 60 \mathrm{~Hz}$) or 250 V DC (UL rating: $200 \mathrm{~V} D$) under any normal and abnormal conditions.
7. Make sure that the wiring of intrinsically safe circuits does not contact with other circuits or is not subject to electromagnetic and electrostatic inductions, otherwise protection from hazards is not ensured.
8. When identifying intrinsically safe circuits by color, use light blue terminal blocks and cables.
9. When wiring the intrinsically safe circuit, determine the distance to satisfy the wiring parameters shown below.
a) Wiring capacitance $\mathrm{Cw} \leq \mathrm{Co}-\mathrm{Ci}$

Co: Intrinsically safe circuit allowable capacitance
$\mathrm{Ci}: \quad$ Internal capacitance of switches
b) Wiring inductance $\mathrm{Lw} \leq \mathrm{Lo}-\mathrm{Li}$

Lo: Intrinsically safe circuit allowable inductance
Li: Internal inductance of switches
c) Wiring resistance $\leq R w$

Rw: Allowable wiring resistance

Switches in the Hazardous Area

1. A switch contains the switch contact, enclosure, and internal wiring. A switch contact refers to an ordinary switching device which consists of contacts only.
2. When the switch has internal wiring or lead wire, make sure that the values of internal capacitance (Ci) and inductance (Li) are within the certified values.
3. Enclose the bare live part of the switch contact in an enclosure of IP20 or higher protection.

EB3L Discrete Output Barriers

126 types of pilot lights and buzzers can be connected. Illuminated pushbuttons and illuminated selector switches can be connected by combining with the EB3C discrete input barrier. No grounding required.
Key features:

Ratings	
Discrete Output Barrier	[Exia] II C
Pilot Light (separate wiring)	Exia II CT6
Pilot Light (common wiring)	Exia II CT4
Illuminated Pushbutton	Exia II CT4
Illuminated Selector Switch	Exia II CT4
Buzzer (separate wiring)	Exiab II CT6

- IEC60079 compliant
- Compact and lightweight
- 8 - and 16-channel types are available in common wiring types, ideal for connection to PLCs. 16-circuit types are also available with a connector.

9 NK Korean
korean register

16 CX
$\underline{\underline{1}}$

Illuminated Pushbutton/Selector Switches

Illuminated pushbutton/selector switches can be used with the combination of EB3C and EB3L.

Entity Barrier Parameters

$\mathrm{Ta}=60^{\circ} \mathrm{C}, \quad \mathrm{Um}=250 \mathrm{~V},(\mathrm{Um}=125 \mathrm{~V}$ UL only). Uo=13.2V, $\mathrm{I} 0=14.2 \mathrm{~mA}, \quad \mathrm{Po}=46.9 \mathrm{~mW}$ at each channel $\mathrm{Pn}-\mathrm{Nn} \mathrm{lo}=227.2 \mathrm{~mA}, \quad \mathrm{Po}=750 \mathrm{~mW}$ at max 16 channels $\mathrm{Pn}-\mathrm{Nn}$

TIIS, NK only $T a=60^{\circ} \mathrm{C}, \mathrm{Um}=250 \mathrm{~V}$

	1 ch	16 ch
Seperate	Common 16	
Uo	13.2 V	13.2 V
lo	14.2 mA	227.2 mA
Po	46.9 mW	750 mW
Co	$0.47 \mu \mathrm{~F}$	$0.365 \mu \mathrm{~F}$
Lo	87.5 mH	0.425 mH

Note 1 Added to above table, the next values combined Lo and Co are allowable;

Io(mA)	14.2						28.4						227.2					
Lo(mH)	175*	87.5	30.0	2.5	0.55	0.25	43.5*	21.5	20.0	3.5	0.43	0.25	0.68*	0.34	0.68	0.6	0.22	0.13
Co($\mu \mathrm{F}$)	0.90*	0.45	0.33	0.54	0.77	0.90	0.90*	0.45	0.30	0.48	0.80	0.90	0.90*	0.45	0.45	0.49	0.80	0.90

Note 2 The intrinsic safe apparatus and wirings shall be accordance to following formulas; for example: $\mathrm{Ui} \geq \mathrm{Uo} \quad \mathrm{Ii} \geq \mathrm{lo} \quad \mathrm{Pi} \geq \mathrm{Po} \quad \mathrm{Ci}+\mathrm{Cc} \leq \mathrm{Co} \quad \mathrm{Li}+\mathrm{Lc} \leq \mathrm{Lo}$
*: Therefore, the values are allowable only at $\mathrm{Li} \leq 1 \% \mathrm{Lo}$ and $\mathrm{Ci} \leq 1 \% \mathrm{Co}$ of the intrinsic safe apparatus. (In the case of 50% of Co and Lo parameters are applicable,the maximum capacitance allowed shall not be more than $\mathrm{Co}=1 \mu \mathrm{~F}$ for IIB and $\mathrm{Co}=600 \mathrm{nF}$ for IIC.)

Common Wiring for PLC Inputs

8 - and 16-circuit types are available in common wiring types, ideal for connection to PLCs (DC voltage only).

Connector Type

MIL connector on the non-hazardous side

- Easy connection to PLCs
- Wiring is reduced by 90%
- Various 20-pin MIL connectors can be connected

Specifications

$\begin{aligned} & \text { N } \\ & \text { C} \\ & 0 \mathrm{O} \end{aligned}$	Rating		Intrinsic safety type (IEC compliant) [Exia] II C
\bigcirc	Degree of Protection		IP20 (IEC60529)
		Discrete Output Barrier	Safe indoor place (non-hazardous area)
-		Pilot Light, Illuminated Switch, Buzzer	For zone 0, 1, 2 hazardous areas For zone 1 and 2 hazardous areas
む	Non-intrinsically Safe Circuit Maximum Voltage (Um)		250V AC 50/60Hz, 250V DC UL value: 125 V AC
	Operation		Input ON, Output ON (1:1)

Certifications

	Certification Organization	Ratings	Certification No.
	UL	Class I, II, III Div. 1 Group A, B, C, D, E, F, and G Class I, Zone 0 [AExia] II C	E234997
	FM	Class I, II, III Div. 1 Group A, B, C, D, E, F, and G Class I, Zone 0 [AExia] II C	3047250
	PTB (IEC-Ex)	[Exia] IIC: Gas vapor	IECEx PTB 10.0015
	PTB (ATEX)	II(1)G [Exia] IIC: Gas vapor II(1)D [Exia] IIIC: Dust	PTB09 ATEX2046
		Discrete output barrier: [Exia] II C	TC20541
		Pilot light/miniature pilot light: (separate wiring): Exia II CT6	TC16361
	TIIS	Pilot light/miniature pilot light: (common wiring): Exia II CT4	TC16360
		Illuminated switch: Exia II CT4	TC16362
$\begin{aligned} & \mathscr{0} \\ & \stackrel{0}{0} \\ & \underset{\omega}{\infty} \end{aligned}$		Buzzer: Exib II CT6	TC20797
	NK	Discrete output barrier: [Exia] II C Buzzer: Exib II CT6	Type Test No. 13 T606 pending
	CQST	[Exia Ga] IIC	CNEx 14.0047
	KCs	Discrete output barrier: [Exia] II C Buzzer: Exib II CT6	KCS14-AV4BO-0375 pending
	KR	[Exia] IIC	pending

Note: Illuminated switches, pilot lights, and miniature pilot lights are certified by TIIS and NK only. Other certification organizations, such as UL, regard these units as simple apparatus, and require no certification.

General Specifications

Power Voltage Type	AC Power	DC Power
Rated Power Voltage	100 to 240V AC (UL rating: 100 ~ 120V AC)	24V DC
Allowable Voltage Range	$\begin{aligned} & 85 \text { to 264V AC } \\ & \text { (UL rating: } 85 \sim 125 \mathrm{~V} \text { AC) } \end{aligned}$	21.6 to 26.4V DC
Rated Frequency	$50 / 60 \mathrm{~Hz}$ allowable range: 47 to 63 Hz)	-
Inrush Current	$\begin{aligned} & 10 \mathrm{~A}(100 \mathrm{~V} \text { AC) } \\ & 20 \mathrm{~A}(200 \mathrm{~V}) \end{aligned}$	10A
Dielectric Strength	Between intrinsically safe circuit and non-intrinsically safe circuit: 1526.4V AC	
	Between AC power and signal input: 1500V AC	
Operating Temperature	-20 to $+60^{\circ} \mathrm{C}$ (no freezing)	
Storage Temperature	-20 to $+60^{\circ} \mathrm{C}$ (no freezing)	
Operating Humidity	45 to 85\% RH (no condensation)	
Atmosphere	800 to 1100 hPa	
Pollution Degree	2 (IEC60664)	
Insulation Resistance	$10 \mathrm{M} \Omega$ minimum (500 V DC megger, between the same poles as the dielectric strength)	
Vibration Resistance (damage limits)	Panel mounting: $\quad 10$ to 55 Hz , amplitude 0.75 mm (2 hours each on $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$)	
	DIN rail mounting: $\quad 10$ to 55 Hz , amplitude 0.35 mm (2 hours each on X, Y, Z)	
Shock Resistance (damage limits)	Panel mounting: $\quad 500 \mathrm{~m} / \mathrm{s}^{2}(3$ times each on $X, Y, Z)$	
	DIN rail mounting: $\quad 300 \mathrm{~m} / \mathrm{s}^{2}(3$ times each on $X, Y, Z)$	
Terminal Style	M3 screw terminal	
Mounting	$35-\mathrm{mm}$-wide DIN rail or panel mounting (M4 screw)	
Power Consumption (approx.)	8.8 VA (EB3L-S10SAN at 200V AC) 5.2 W (EB3L-S16CSDN at 24V DC)	

Part Numbers

Discrete Output Barriers

Power Voltage	Connection to Non-intrinsically Safe Circuit	Input	Input Wiring Method	Number of Channels	Part Number	Weight (g)
100 to 240 V AC (UL rating: 100 ~ 120V AC)	Screw Terminal	Source	Separate/Common Wiring Compatible	1	EB3L-S01SAN	150
				2	EB3L-SO2SAN	180
				3	EB3L-S03SAN	190
				5	EB3L-SO5SAN	250
				6	EB3L-S06SAN	260
				8	EB3L-S08SAN	330
				10	EB3L-S10SAN	360
			Common Wiring Only	8	EB3L-S08CSAN	260
		Sink	Separate/Common Wiring Compatible	1	EB3L-S01KAN	150
				2	EB3L-S02KAN	180
				3	EB3L-SO3KAN	190
				5	EB3L-S05KAN	250
				6	EB3L-S06KAN	260
				8	EB3L-S08KAN	330
				10	EB3L-S10KAN	360
			Common Wiring Only	8	EB3L-S08CKAN	260
24 V DC	Screw Terminal	Source	Separate/Common Wiring Compatible	1	EB3L-S01SDN	130
				2	EB3L-SO2SDN	160
				3	EB3L-SO3SDN	170
				5	EB3L-SO5SDN	240
				6	EB3L-S06SDN	250
				8	EB3L-S08SDN	310
				10	EB3L-S10SDN	250
			Common Wiring Only	8	EB3L-S08CSDN	340
				16	EB3L-S16CSDN	350
		Sink	Separate/Common Wiring Compatible	1	EB3L-S01KDN	130
				2	EB3L-S02KDN	160
				3	EB3L-S03KDN	170
				5	EB3L-S05KDN	240
				6	EB3L-S06KDN	250
				8	EB3L-S08KDN	310
				10	EB3L-S10KDN	340
			Common Wiring Only	8	EB3L-S08CKDN	250
				16	EB3L-S16CKDN	350
	Connector	Source	Common Wiring Only	16	EB3L-S16CSD-CN	350
		Sink		16	EB3L-S16CKD-CN	350

Accessories

Name	Part Number	Description
DIN Rail	BAA1000	Aluminum (1m long, 10.5mm high)
EAP1000	Steel (1m long, 7.5mm high)	
End Clip	BNL6	Medium DIN rail end clip

Terminal

Mounting Hole Layout (Screw Mounting)

Connector

Non-intrinsically Safe External Input Wiring Examples

16-channel Common Wiring, Source (Ex.: EB3L-S16CSDN)

Note: Source input type can be connected to PLC sink output type C terminal is the negative common line.

8-channel Common Wiring, Source (Ex.: EB3L-S08CSDN)

6-channel Sink (Ex. EB3L-SO6KAN

16-channel Common Wiring, Sink (Ex.: EB3L-S16CKDN)

Note: Sink input type can be connected to PLC source output type C terminal is the positive common line.

Connector Wiring Terminal Arrangement

EB3L-S16CSD-CN

CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16

	S9	S10	S11	S12	S13	S14	S15	S16	NC	NC	CHn	
19	\square	$1<$	-									
20	\square	$2+$	-									
	S1	S2	S3	S4	S5	S6	S7	S8	C1	C2		
	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	COM	+V		

EB3L-S16CKD-CN

Wiring Example with IDEC's MicroSmart PLC Output Modules

FC4A-T16K3		EB3L-S16CSD-CN		FC4A-T16S3		EB3L-S16CKD-CN	
Terminal	Output	Input	Terminal	Terminal	Output	Input	Terminal
20	00	S1	20	20	00	S1	20
19	010	S9	19	19	010	S9	19
18	01	S2	18	18	01	S2	18
17	011	S10	17	17	011	S10	17
16	02	S3	16	16	02	S3	16
15	012	S11	15	15	012	S11	15
14	03	S4	14	14	03	S4	14
13	013	S12	13	13	013	S12	13
12	04	S5	12	12	04	S5	12
11	014	S13	11	11	014	S13	11
10	05	S6	10	10	05	S6	10
9	015	S14	9	9	015	S14	9
8	06	S7	8	8	06	S7	8
7	016	S15	7	7	016	S15	7
6	07	S8	6	6	07	S8	6
5	017	S16	5	5	017	S16	5
4	COM	COM	4	4	COM	COM	4
3	COM	NC	3	3	COM	NC	3
2	+V	+V	2	2	-V	-V	2
1	+V	NC	1	1	-V	NC	1

Note: The wiring in dashed line does not affect the operation of the EB3L.
Applicable connector is IDEC's JE1S-201.
Output power for PLC outputs is supplied by the EB3L, therefore the PLC output does not need an external power supply.

Wiring Example of Intrinsically Safe External Outputs

1. Common Wiring (Maximum 16 circuits) (Buzzers cannot be wired in a common line.)*

All output lines are wired to a common line inside the intrinsically safe equipment (one common line per intrinsically safe circuit) - DC input models only.

All input lines are wired to a common line outside the intrinsically safe equipment (one common line per intrinsically safe circuit).

2. Separate Wiring

Each output line of the EB3L makes up one independent intrinsically safe circuit of a pilot light or buzzer.

3. Wiring Illuminated Pushbuttons and Illuminated Selector Switches
(A maximum of 16 channels of EB3L and EB3C can be wired to a common line.)
The following example illustrates the wiring for a total of 10 contacts used by three illuminated pushbuttons (LB1 to LB3) and three illuminated selector switches (LS1 to LS3).

*This is permitted under TIIS approvals

When using two or more EB3L's to set up one intrinsically safe circuit in the common wiring configuration, interconnect two neutral terminals (N 1 through N 10) on each EB3L between adjacent EB3L's in a parallel.

Barriers

Description	No. of Poles	Length (m)	Part Number	Shape	Applicable Type
With Shield I/0 Terminal Cable Without Shield	20	0.5	FC9Z-H050A2O		IDEC MicroSmart I/O Module
		1	FC9Z-H100A20		
		2	FC9Z-H200A20		
		3	FC9Z-H300A20		
		0.5	FC9Z-H050B20		
		1	FC9Z-H100B20	\square	IDEC MicroSmart
		2	FC9Z-H200B2O	- ${ }_{\text {- }}$	I/O Module
		3	FC9Z-H300B20		
Cable with Crimping Terminal		1	BX9Z-H100E4		Screw Terminal
		2	BX9Z-H200E4		
		3	BX9Z-H300E4		
40-pin Cable for PLC		1	BX9Z-H100B		Mitsubishi A Series
		2	BX9Z-H200B		Output Module (sink)
		3	BX9Z-H300B		EB3L-S16CSD-CN

FC9Z-H $\square \square \square A$, FC9Z-H $\square \square \square B$
Internal Connection

FC9Z-H $\square \square \square$ E4 Internal Connection
IDEC Connector JE1S-201

Y-shaped Compresion Terminal (Marking Tube Number)

(Connection Side)

BX9Z-H $\square \square \square$ B Internal Connection

Switches and Pilot Devices

General Specifications for Pilot Light, Illuminated Pushbutton, Illuminated Selector Switch, and Buzzer

Note: Connect buzzers in separate wiring. Buzzers cannot be used in common wiring.

Part Numbers for Pilot Lights, Illuminated Pushbuttons, Illuminated Selector Switches, and Buzzers

Unit	Size	Series ${ }^{1}$	Shape	Operation Mode	Contact	Ordering Number	Lens Color/ Illumination Color Code*	Operation
득흑$\stackrel{\rightharpoonup}{0}$$\cdots$	ø30	N	Dome	-	-	EB3P-LAN1-*	A: Amber G: Green R: Red S: Blue W: White ${ }^{5}$ Y: Yellow	-
			Square	-	-	EB3P-LUN3B-*		
			Rectangular w/Metal Bezel	-	-	EB3P-LUN4-*		
			Dome w/Diecast Sleeve	-	-	EB3P-LAD1-*		
	ø22	TW	Flush	-	-	EB3P-LAW1-*		
			Flush(Marking Type)	-	-	EB3P-LAW1B-*		
			Dome	-	-	EB3P-LAW2-*		
			Square Flush (Marking Type)	-	-	EB3P-LUW1B-*		
		HW	Round Flush	-	-	EB3P-LHW1-*		
			Dome	-	-	EB3P-LHW2-*		
			Square Flush	-	-	EB3P-LHW4-*		
		LW	Round	-	-	EB3P-LLW1-*		
			Square	-	-	EB3P-LLW2-*		
			Round w/ Square Bezel	-	-	EB3P-LLW3-*		
	$ø 10$	UP	Extended	-	-	IPL1-18-*	A: Amber G: Green R: Red W: White ${ }^{5}$ Y: Yellow	-
			Dome	-	-	IPL1-19-*		
	$\emptyset 8$		Flush	-	-	IPL1-87-*		
			Extended	-	-	IPL1-88-*		
			Dome	-	-	IPL1-89-*		
	$ø 6$		Flush	-	-	IPL1-67-*		
			Extended	-	-	IPL1-68-*		
			Dome	-	-	IPL1-69-*		

Barriers

Part Numbers for Pilot Lights, Illuminated Pushbuttons, Illuminated Selector Switches, and Buzzers, con't

1. Codes $\mathrm{N}, \mathrm{TW}, \mathrm{HW}, \mathrm{LW}$, and UP are the series names of IDEC's control units.
2. Specify a color code in place of *.
3. Above parts are recommended for EB3L barriers. However, none of these parts are UL recognized.
4. Buzzers are not rated for Zone 0 , but only Zones 1 and 2 .
5. Use PW (pure white) LED for yellow lenses

Accessory

Name	Ordering Number	Package Quantity	Remarks
LED Lamp	EB9Z-LDS1-*	1	Specify a color code in place of * in the ordering number. A: amber, G: green, R: red, S: blue, W: white, PW: pure white (for yellow use PW with yellow lens) Use PW (pure white) LED for yellow lenses
Static Electricity Caution Plate	EB9Z-N1PN10	10	Polyester 20(W) x 6(H) mm

Above part is recommended for EB3L barriers. However, this part is not UL recognized.

Pilot Lights

ø22 EB3P-LAW1

ø22 EB3P-LAW1B

ø22 EB3P-LHW1/EB3P-LHW2/EB3P-LHW4
Terminal cover attached.

Miniature Pilot Lights (Terminal cover not available)

ø30 EB3P-LAD
Terminal Cover: APD-PVL
(sold separately)

ø22 EB3P-LAW2

ø30 EB3P-LUN3B
Terminal Cover: APN-PVL
(sold separately)

ø22 EB3P-LUW1B

ø22 EB3P-LLW1/EB3P-LLW2/EB3P-LLW3
Terminal cover attached.

Illuminated Pushbuttons

ø22 EB3P-LBAW211/LBAOW211
Terminal cover attached.

ø22 EB3P-LBL1W1C2/LBLA1W1C2
Terminal cover: LW-VL2M (sold separately)

Illuminated Selector Switches

ø30 EB3P-LSAN211/EB3P-LSAN320
Terminal cover: N-VL4 (2 pcs.) (sold separately)

ø22 EB3P-LSHW211/EB3P-LSHW320
Terminal cover attached

Buzzer

ø30 EB3P-ZUN12CN/ZUN12FN
Terminal cover: AZ-VL5 (sold separately)

ø30 EB3P-LBAVN311-R
Terminal cover: N-VL4 (2 pcs.) (sold separately)

ø22 EB3P-LBH1W110/LBHA1W110
Terminal cover attached.
Terminal cover attached.

ø22 EB3P-LBL2W1C2/LBLA2W1C2
Terminal cover: LW-VL2M (sold separately)

All dimensions in mm .

Polarity Identification

Pilot Lights/Illuminated Pushbuttons/Illuminated Selector Switches
Positive terminal: X1
Negative terminal: X2

Miniature Pilot Lights

Positive terminal: Long pin terminal Negative terminal: Short pin terminal

Pin Terminals

A light blue marking is indicated on the negative terminal side to identify intrinsically safe usage.

Buzzer

Positive terminal: +
Negative terminal: -

LED Lamp

Lamp Test

When checking the lamp lighting without using the EB3L discrete output barrier, first make sure that the atmosphere is free from explosive gases. Connect a 12 V DC power supply and a protection resistor of $1 \mathrm{k} \Omega$ in series to turn on the pilot light.

Precautions for Operation

Installation of EB3L Discrete Output Barriers

1. The EB3L can be installed in any direction.

2. Install the EB3L discrete output barrier in a safe area (non-hazardous area) in accordance with intrinsic safety ratings and parameters. To avoid mechanical shocks, install the EB3L in an enclosure which suppresses shocks.
3. When installing or wiring the EB3L, prevent electromagnetic and electrostatic inductions in the intrinsically safe circuit. Also prevent the intrinsically safe circuits from contacting with another intrinsically safe circuit and any other circuits.

Maintain at least 50 mm clearance, or provide a metallic separating board between the intrinsically safe circuit and non-intrinsically safety circuit. When providing a metallic separating board, make sure that the board fits closely to the enclosure (top, bottom, and both sides). Allowable clearance between the enclosure and board is 1.5 mm at the maximum.

The clearance of 50 mm between the intrinsically safe circuit and non-intrinsically safe circuit may not be sufficient when a motor circuit or high-voltage circuit is installed nearby. In this case, provide a wider clearance between the circuits referring to 6. (3) "Minimum Parallel Distance between the Intrinsically Safe Circuit and Other Circuits."

Panel Cut-out
Selector Switches/Buzzers

Pilot Lights/IIluminated Pushbuttons/Illuminated
ø30

Miniature Pilot Lights
$ø 10$

$ø 8$

ø22

ø6

The 4.8 or 3.2 recess is needed only when using an anti-rotation ring or a nameplate with an antirotation projection.
EB3P-LHW does not have an anti-rotation groove.
All dimensions in mm. sically safe circuits, mount EB3L units with terminals arranged in the same direction.

5. Maintain at least 6 mm (or 3 mm according to IEC60079-11: 1999) clearance between the terminal of intrinsically safe circuit and the grounded metal part of a metal enclosure, and between the relay terminal block of an intrinsically safe circuit and the grounded metal part of a metal enclosure.
6. For installing the EB3L, mount on a $35-\mathrm{mm}$-wide DIN rail or directly on a panel using screws. The EB3L can be installed in any direction. Make sure to install securely to withstand vibration. When mounting on a DIN rail, push in the clamp completely. Use the BNL6 end clips on both sides of the EB3L to prevent from moving sideways.
7. Excessive extraneous noise may cause malfunction and damage to the EB3L. When extraneous noise activates the voltage limiting circuit (thyristor), remove the noise source and restore the power.

Terminal Wiring

1. Using a $\varnothing 5.5 \mathrm{~mm}$ or smaller screw driver, tighten the terminal screws (including unused terminal screws) to a torque of 0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$ (recommended value).
2. Make sure that IP20 is achieved when wiring. Use insulation tubes on bare crimping terminals.
3. To prevent disengaged wires from contacting with other intrinsically safe circuits, bind together the wires of one intrinsically safe circuit.
4. When the adjacent terminal is connected to another intrinsically safe circuit, provide an insulation distance of at least 6 mm .

Signal Input

1. Connect the EB3L to the switches or output equipment which have a low leakage current (0.1 mA maximum).
2. The EB3L is equipped with power supply. Do not apply external power to the EB3L.
3. When connecting the EB3L's of connector type in parallel, make sure that the same power supply is used. When using C1 and C2 terminals to supply power to outside equipment, maintain the current at 50 mA maximum.

Power Voltage

1. Do not apply an excessive power voltage, otherwise the EB3L may be damaged.
2. The EB3L of AC power type may operate at a low voltage (approx. 20V).

Pilot Lights, Illuminated Switches, and Buzzers in the Hazardous Area

1. EB3P and IPL1 units shown on page 267 can be used with the EB3L. Buzzers cannot be connected in common wiring.
2. Install the EB3P and IPL1 units on enclosures of IP20 or higher protection. Use a metallic enclosure with magnesium content of 7.5% or less (steel and aluminum are acceptable).
3. When wiring, make sure of correct polarities of the EB3P and IPL1.
4. Certification mark is supplied with the units. Attach it on the visible area of the EB3P or IPL1 (for Japan application).
5. EB3P (except for buzzers) and IPL1 illuminated units, which are simple apparatuses in accordance with relevant standards of each country, can be installed in the hazardous area and connected to the EB3L located in the safe area.
6. When connecting illuminated switches to the EB3L discrete output barrier and the EB3C discrete input barrier, a maximum of 16 channels can be connected in common wiring.

Wiring for Intrinsic Safety

1. The voltage applied on the general circuit connected to the non-intrinsically safe circuit terminals of the EB3L discrete output barrier must be 250V AC, $50 / 60 \mathrm{~Hz}$ (UL rating: 125 V AC $50 / 60 \mathrm{~Hz}$), or 250 V DC (UL rating: 125 V DC) at the maximum under any conditions, including the voltage of the power line and the internal circuit.
2. When wiring, take into consideration the prevention of electromagnetic and electrostatic charges on intrinsically safe circuits. Also, prevent intrinsically
safe circuits from contacting with other circuits.
3. The intrinsically safe circuits must be separated from non-intrinsically safe circuits. Contain intrinsically safe circuits in a metallic tube or duct, or separate the intrinsically safe circuits referring to the table at right.

Note: Cables with a magnetic shield, such as a metallic sheath, prevent electromagnetic induction and electrostatic induction, however, a non-magnetic shield prevents electrostatic induction only. For non-magnetic shields, take a preventive measure against electromagnetic induction.

Finely twisted pair cables prevent electromagnetic induction. Adding shields to the twisted pair cables provides protection against electrostatic induction.

Voltage and Current of Other Circuits	Over 100A	100A or less	50A or less	10A or less
Over 440V	2000	2000	2000	2000
440 V or less	2000	600	600	600
220 V or less	2000	600	600	500
110 V or less	2000	600	500	300
60 V or less	2000	500	300	150

Note: Above chart is applicable under TIIS standards only.

Minimum Parallel Distance between the Intrinsically Safe Circuit and Other Circuits (mm)

1. When identifying intrinsically safe circuits by color, use light blue terminal blocks and cables.
2. When using two or more EB3L's to set up one intrinsically safe circuit in the common wiring configuration, interconnect two neutral terminals (N1 through N 10) on each EB3L between adjacent EB3L's in parallel.
3. Make sure that the power of the EB3L, pilot lights, and other connected units are turned off before starting inspection or replacement.
4. When wiring the intrinsically safe circuit, determine the distance to satisfy the wiring parameters shown below. Note that parameters are different between separate wiring and common wiring and depend on the connected units, such as pilot lights, illuminated pushbuttons, and buzzers.
a) Wiring capacitance $\mathrm{Cw} \leq \mathrm{Co}-\mathrm{Ci}$

Co: Maximum external capacitance of the EB3L
Ci: Internal capacitance of the connected unit
b) Wiring inductance $\mathrm{Lw} \leq \mathrm{Lo}$ - Li

Lo: Maximum external inductance of the EB3L
Li: Internal inductance of the connected unit
c) Wiring resistance $\leq R w$

Rw: Allowable wiring resistance
d) Allowable wiring distance $D(\mathrm{~km})$ is the smallest value of those calculated from the capacitance, inductance, and resistance.

$D \leq \mathrm{Cw} / \mathrm{C}$	$C(\mathrm{nF} / \mathrm{km}):$ Capacitance of cable per km
$\mathrm{D} \leq \mathrm{Lw} / \mathrm{L}$	$\mathrm{L}(\mathrm{mH} / \mathrm{km}):$ Inductance of cable per km
$\mathrm{D} \leq \mathrm{Rw} / 2 \mathrm{R}$	$\mathrm{R}(\Omega / \mathrm{km}):$ Resistance of cable per km

Note: For the details of wiring the intrinsically safe circuits, refer to a relevant test guideline for explosion-proof electric equipment in each country.

Safety Precautions

Do not use the EB3C Discrete Input Barrier and EB3L Discrete Output Barrier for other than explosion protection purposes.
Read the user's manual to make sure of correct operation before starting installation, wiring, operation, maintenance, and inspection of the EB3C Discrete Input Barrier and EB3L Discrete Output Barrier.

General Information

What is Explosion Protection?

Explosion Mechanism

For an explosion to occur, both hazardous atmosphere (mixture of explosive gas/vapor and air) and ignition source from electrical equipment must exist. The first step for explosion prevention is to prevent the three factors (explosive gas/vapor, air, and ignition source) from existing at the same time.

Ignition source: Electrical equipment which originates electrical sparks or has a high temperature, capable of causing ignition in a hazardous atmosphere.

Explosion protection types:

1. Separation of explosive gas/vapor and ignition source
\rightarrow Flameproof explosion protection
\rightarrow Pressurized explosion protection
2. Low power on ignition source \rightarrow Intrinsically safe explosion protection

Classification of Hazardous Areas

- Required when selecting explosion protection electrical equipment and wiring methods.
- Determined by user.
- Hazardous areas are classified depending on the frequency of the occurrence of hazardous atmosphere.

IEC Classification

Zone 0: Where hazardous atmosphere may exist for 1,000 hours or longer per year.
Zone 1: Where hazardous atmosphere may exist for 10 to 1,000 hours per year.
Zone 2: Where hazardous atmosphere may exist for less than 1 hour per year.

Gasoline Tank Example

Explosion Protection Types

Intrinsically Safe Structure

- Structure in which voltage and current are limited so that no sparks, arc, and thermal effect produced by electric equipment (switch, pilot light, etc) in hazardous areas are capable of causing ignition of explosive gas/vapor.

Features:

- Barrier is installed in non-hazardous area, and is connected to the switches or pilot lights in hazardous area.
- The intrinsically safe system can be used in zone 0 .
- Because voltage and current to the electric equipment are limited, the variety of devices that can be connected to the barrier is restricted.
- Wiring is required between hazardous and non-hazardous areas.
- Grounding (grounding resistance 10Ω max.) may be required (EB3C, EB3L do not require grounding).

Grounding - The procedure to achieve required resistance value by inserting a grounding wire into a hole in the ground and furnishing the surrounding with material of superior electrical conductivity.

Non-insulated barrier (Zener barrier): grounding resistance 10Ω max.

- While the voltage difference between the circuits is limited in Zener barriers, the voltage difference between the circuits and grounding is unlimited. When a short-circuit occurs between the circuits and ground, high voltage/current may be generated in the circuits, causing a possible explosion. The OV line of circuits, therefore, must be provided with grounding (resistance 10Ω max.) so that the voltage/current can be shunted to the ground.

Insulated barrier: grounding resistance 100Ω max.

- Intrinsically safe and non-intrinsically safe parts are electrically isolated by an isolation transformer. If a sufficient isolation distance is not provided on the isolation transformer, however, the transformer may short-circuit between primary and secondary when an abnormal voltage occurs. This may generate high voltage/ current in the intrinsically safe circuit, causing a possible explosion. A transformer with metallic isolator must be used between primary and secondary, and grounding (resistance 100Ω max.) must be provided.

Difference between NI (Non-incendive) \& IS (Intrinsic Safety)

Standard

- NI: Installed in areas that are Zone 2 hazardous locations.
- IS: Installed in areas that are non-hazardous.

Advantages \& Disadvantages

- NI: Small and inexpensive. Devices connected with NI are also installed only in the Zone 2 area.
- IS: Small but more expensive. Devices connected with IS can be used in the Zone 0, 1 and 2 areas (all zones).

Structure

IS Structure

Note : Instead of zeners, thyristors are used in EB3C for better energy effeciency.

Explosion Protection Marking

Gas is categorized into groups by explosiveness and ignition temperature.
Technical standard: Determines the gas type which can be used with the apparatus.

[^0]
Barriers

EB3C/EB3L Features

EB3C	Weight:	380g	
(10-circuit)	Dimensions:	$171.5 \mathrm{~L} \times 75 \mathrm{~W} \times 77.5 \mathrm{H}(\mathrm{mm})$	- Plastic housing
EB3L (10-circuit)	Weight: Dimensions:	$\begin{aligned} & 360 \mathrm{~g} \\ & 171.5 \mathrm{~L} \times 75 \mathrm{~W} \times 77.5 \mathrm{H}(\mathrm{~mm}) \end{aligned}$	- Small system design

No grounding required: less labor, less cost

No explosion protection grounding.
Isolation transformer is used. All isolations - not only between primary and secondary, but also cores and bobbins - are reinforced.

No isolator = No grounding

No electrical equipment grounding.

Power supply part:	Electric shock is prevented with reinforced isolation.
Conforms to IEC standard.	
Output part:	The small power \& EMC design requires no grounding. Conforms to IEC switch output standard.

Shield wire treatment
Shield wires of intrinsically safe circuits are grounded to the panel in non-hazardous area, and not connected to the N terminal on the barrier.

Common Type and Connector Type

1. Common type \rightarrow For 8 and 16 circuits. Easy connection to PLC.
2. Connector type

- Flat cable connection between non-intrinsically safe part and PLC.
- Connectable to IDEC's FC5A, and FC4A.

Standards

1. CE

Conforms to EMC directive and LVD.
EMC directive:
Electromagnetism generated by the barrier does not affect other communication equipment. Also, electromagnetism generated by other communication equipment does not affect the barrier.
LVD (Low Voltage Directive):
For rated voltages 50 to 1000 V AC, 75 to 1500 V DC.
2. ATEX

Adopted by EU, this directive covers electrical and mechanical equipment and protective systems, which may be used in potentially explosive atmospheres (Europe). EN50014 series is adopted.
3. FM (Factory Mutual Approval)

A private US certification organization for waterproof and intrinsic safety. Widely recognized for more intrinsic safety than UL.
4. CSA (Canadian Standards Association) A Canadian certification organization for electrical equipment.
5. NK: Class NK (Nippon Kaiji Kyokai)

Required for ships with Japanese ship registration.
6. Underwriters Laboratories (UL) - A US certification agency for all electrical and hazardous location products.

Less labor

1. Finger-safe spring-up terminal

The finger-safe, captive spring-up terminals prevent electric shock (IP20), and make installation easy. No screw loss.
2. Universal voltage 100 to 240 V AC (UL rating 100 ~ 120VAC).
3. Installation

Direct and DIN-rail mountable.
EB3 series: Screws cannot be touched by fingers even when loosened.

Switches connectable to EB3C

Switches which are configured only with mechanical contacts (dry contacts) can be connected to the EB3C.

Pushbutton, selector, cam, toggle, limit, micro, reed, foot, pressure, and temperature switches can be used.

Note: Contact rating must be $13.2 \mathrm{~V}, 14.2 \mathrm{~mA}$ minimum. Contact material such as silver oxide cadmium and silver tungsten may cause conduction failure at 10 mA due to the film generated on the surface.

Equipment connectable to EB3L

Common wiring: Only EB3P-L type pilot lights, which have been approved, can be connected to the EB3L discrete output barrier.
Separate wiring: \quad No approval is required for pilot lights and buzzers to be connected to the EB3L discrete output barrier. However, users must make sure that the temperature rise of the equipment is below the rated value with the current and voltage supplied from the discrete input barrier. Also take the ratings of intrinsically safe circuit into consideration. IDEC's EB3P-L type pilot light lights and EB3P-Z type buzzers satisfy the ratings.

EB3P-L Pilot light: ø22 and ø30, a total of 78 types

- Super LED installed
- Lens colors: amber, blue, green, red, white, and yellow
- Accessories and maintenance parts are the same as standard control units. See IDEC's control units catalogs.
IPL1 Miniature pilot light: $\varnothing 6$, $\varnothing 8$, and $\varnothing 10$, a total of 40 types
- Low price
- Illumination colors: amber, green, red, white, and yellow

EB3P-Z buzzer: Continuous and intermittent sound, ø30 mounting hole, terminal block type

- Degree of protection: IP20
- Common wiring is not available due to high inductance value.
- Approved by TIIS only
ø30: APN, UPQN equivalent ø22: APW, HW,LW,UPQW equivalent

When connecting one buzzer and 15 pilot lights to EB3L-S16CSD, do not connect the negative lines of buzzer and pilot lights in common. Connect the buzzer and pilot lights to the barrier using separate lines (15 pilot lights can be wired with one common line).

Connecting Illuminated Switches

Made possible with the combination of EB3L and EB3C.
User benefits

- Flexibility of control panel design

Explosion protected panels can be designed in a similar manner to non-explosion protected panels (non-explosion protected panels can be used as explosion protected panels without any changes).

- Control panel becomes smaller.

Connectable illuminated switch: 134 types

تِan	EB3P-LB Illuminated Pushbutton Switch EB3P-LS Illuminated Selector Switch	$\begin{aligned} & \left\{\begin{array}{l} ø 30: \text { ALN2 equivalent } \\ ø 22: \text { ALW2, HW, LW equivalent } \end{array}\right. \\ & \left\{\begin{array}{l} \text { ø30: ASLN equivalent } \\ ø 22: \text { ASLW, HW, LW equivalent } \end{array}\right. \end{aligned}$
		Super LED installed. Lens color: amber, blue, green, red, white, yellow

Connection Method

1. Difference between EB3C and EB3L

EB3C: ON/OFF output signals to other equipment.
\longrightarrow Connection to PLC's inputs.
EB3L: ON/OFF input signals to pilot lights and buzzers.

$$
\longrightarrow \text { Connection from PLC's outputs. }
$$

2. Sink and Source

Available combination: Sink Output + Source Input or Source Output + Sink Input. Sink output (source input) is mainly adopted in Japan (Europe: source output).
Other information

- Up to 16 channels, including both pilot lights and contacts, can be connected in common wiring.
- Connect the common wires of pilot lights and contacts separately to the N terminals of each barrier.
- Use two wires to connect the common terminals (N terminals) EB3C and EB3L barriers.
- Accessories and maintenance parts are the same as the standard control units. See IDEC's control units catalogs for details.

Safety Precautions

Electrostatic protection: Prevention of fire ignition and explosion caused by electrostatic charges.

- As required by IEC60079-11, limit the exposed surface of plastic equipment (switch, pilot light) installed in hazardous areas.
- $20 \mathrm{~cm}^{2}$ max. for IIC gas atmosphere.
- $100 \mathrm{~cm}^{2}$ max. for IIB and IIA gas atmosphere.
- When the surface area of other than operating parts exceeds the limit, attach a caution plate.
- Pushbutton, knob, or other parts which are frequently touched by operators.

EB3C Separate and Common Types

1. Separate Wiring Type

The output circuit is isolated for each channel. Both sink and source outputs can be connected.
2. Common Wiring Type

The output circuit is not isolated from each other and uses common terminal C. Sink and source outputs are available on different modules.

Sink/Source Definition

Relay Terminal Block

When connecting a discrete input barrier to the switches and pilot lights installed in hazardous area, use a relay terminal block.

A relay terminal block can be eliminated when using EB3C and EB3L, as these barriers are considered as relay terminal blocks.

Cable Extension and Intrinsic Safety Parameter

- For wiring between the barrier and the switches and pilot lights installed in hazardous area, use a cable of $2.0 \mathrm{~mm}^{2}$.
The cable can be extended up to approximately 1 km .
- For EB3L of common wiring type, use a cable of $2.0 \mathrm{~mm}^{2}$. The cable can be extended up to approximately 600 m . Longer cables cause dim LED lighting.
Make sure that wiring parameters (inductance, capacitance, resistance) do not exceed the maximum limit.

Source Output

Source Output = PNP Output = Positive Common Wiring

$$
\uparrow \text { Sink Input }
$$

Noise Countermeasure

- The LED connected to the EB3L may blink due to noises.
- Check the wiring so that noise is not imposed on the EB3L (eg. separation from power line).
- Noise can be avoided also by inserting a noise filter for AC line into the barrier's power input part.
Recommended noise filters:
TDK-Lambda
RSEL-2002W
RSEL-2002A
ZCB2203-11 \Rightarrow RSEL-2003A
Schaffner

RSEL-2006W RSEL-2006

[^0]: Examples: ExdelIBT4, EXelICT4, ExplIBT4, ExiallCT5

