## INVERTER

## Model

## FR-F700



The energy saving effect is obvious


## Fnergy stavig miverter Flo0 semiestis now aveilable



| $\substack{\text { OUUATHE } \\ \text { MANAGEMEN }}$ |
| :---: |
| 008 |

## Evolution of the inverter for fan and pump applications, energy savings for buildings and factories as a whole

## (\$) 1. More Energy Savings

(1) Upgrade of the renown Optimum Excitation Control!! - Achieved a higher level of energy savings during acc./dec. to say
nothing of during constant speed.
[Ex. of Blower Operation Characteristics] [Ratio of Motorer Power Consumplion during acc.Dece.]

(2) The effect of energy savings is obvious A -The effect of energy savings can be confirmed using the operation panel, output terminal (FM, AM terminal) and monitor. Ex. of Power Savings Monitor Display

[Energy Saving Monitor List] Power saving monitor (kW)
Power saving ration Power saving rate $(\%)$
Power saving amount $k W H$ Power saving amount charge (\$) Power saving average value ( kW )
Power saving rate average value $(\%)$ Power saving rate average value $(\%)$
Power saving charge average value (\$) Power saving charge average value ( $(\$)$
Annua power saving amount (kWh) Annual power saving amount charge (\$)


B Removable terminal block

## Full of attractive features!

## 4. Free of Environmental Worres

(1) Reduction of electromagnetic noises E F - Inverter noises have been reduced with the adoption of new technologies. - Newly developed noise filter (EMC filter)
-Because of the built-in EMC filter, the inverter itself can comply with the EMC Directive (2nd environment ${ }^{* 1}$ ) by setting the connector to "with filter" $(* 2,+3)$.

1.: Refert the EMC instruction manual tor compliance conditions.
a: Learase current will increase when the EMC filter is selected
i: Sine
 - Because of the built-in capacitive filter and zero-phase reactor ( 55 K or less), connecting the optional DC reactor to the inverter will comply with the electric installation work common speciicication and machine installation work common specification (2001) written under the general editorship of the Japanese Ministry of land, infrastructure and transportation.
$\qquad$ 55 K or less $\quad$ Standard (Built-in) Standard (Builtin) $O$ Opion (Sell separately) 75 K or more Standard (Buit-in) Option (Sell sepparately) Standard (supplied)
(2) Countermeasures for harmonic current output - Small AC reactor (FR-HAL)/DC reactor (FR-HEL) - AC reactor and DC reactor options for the control of harmonics current output has been miniaturized.
Current outpur has been miniaturized.
(DC reactor is supplied with the 75 K or more as standard.)

- Connection with high power factor converter (FR-HC/MT-HC) is possible -Connection is possible to high power-factor converter for effective suppressions of power-supply harmonics (coefficient $\mathrm{K} 5=0$ ).
(3) Equipped with inrush current limit circuit - Because of the built-in inrush current limit circuit, the current at power on is restricted.


## 5. Simple Operation

(1) Equipped with operation panel with the popular setting dial A Operation is easy with the popular setting dial.

- Frequency and parameters can be set without frustrations -Settings can be made quickly or slowly depending on fast the dial is being turned.
- Settings are certain due to the "clicking" sensation and notch on dial.


Operation panel is detachable and can be installed on the front cover. (Cable connector option is required.) PU/EXT (operation mode) switchover key is available. Dial/key operation lock function is available.

(2) FR Configurator (setup software) From start up to maintenance of the inverter is simple. Possible to save and print parameter setting file making parameter management simple



## 6. Enhanced Network

(1) RS-485 terminal is standard equipped G H - RS-485 terminals are available in addition to the PU. connector. RS-485 communication can be performed using the operation panel or parameter unit. Since terminals for input and output are provided separately, multi-drop connection is easily done
Modbus-RTU (Binary) protocol has been added for communications in addition to computer link.
(2) Possible to correspond with major networks - Possible to connect with LonWorks, CC-Link Ver.1.1 and Ver.2.0 DeviceNetm and Profibus-DP when used with communication options


## 7. Global Compliance

(1) Complies with UL, cUL, EN (LVD) standards

# c( CiSTED US 

(2) Possible to switch sink/source with one-touch - Possible to switch the logic of I/O terminals. Possible to use in all regions
3) Wide voltage range

Accommodate both 240 V power supply ( 55 K or less) and 480 V power supply as standard
8. Wide Range of Functions (1) Remote output function

You can utilize the on/off of the inverter's output signals instead of the remote output function of the programmable logic controller
(2) Enhanced I/O is standard

12 contact inputs, 3 analog inputs, 5 open collector outputs, 2 relay outputs, analog output and pulse output are all standard. Possible to assign variety of functions to contact inputs, open collector outputs and relay outputs
Possible to switch between voltage and current for the analog input. Possible to display the ON/OFF status of the I/O terminals on the operation panel
(3) Simple magnetic flux vector control is possible -High torque in low speed region is possible with simple magnetic flux vector control
( $120 \%$ torque is possible at 3 Hz with slip compensation)

|  | V/F + Optimum Excilation | Simple Megneatio Flux Vector |
| :---: | :---: | :---: |
| For torque | - | $\bigcirc$ |
| For energy saving | $\bigcirc$ | - |

# FR-F720-0.75K 



\section*{ 2200 Cl lass | Symbol | Inverter Capacity |
| ---: | :--- | :--- |
| 0.75 K to 560 K | Indicate capacity kW |}



Peripheral devices necessary for driving the FR-F700 series inverter are indicated below.


## Three-phase AC power supply

Use within the permissible power supply specifications of the inverter. (Refer to page 7 .)

Moulded case circuit breaker (MCCB) or earth leakage circuit breaker (ELB), fuse
The breaker must be selected carefully since an in-rush current flows in the inverter at power on.


Magnetic contactor(MC)
Install the magnetic contactor to ensure safety. Do not use this magnetic contactor to start and stop the inverter.
Doing so will cause the inverter life to be shorten. (Refer to page 57.).


Reactor (FR-HAL, FR-HEL)
Reactors (option) should be used when power harmonics measures are taken, the power factor is to be improved or the inverter is installed near a large power supply system (1000kVA or more). The inverter may be damaged if you do not use reactors.
Select the reactor according to the model. For the 55 K or less, remove the jumpers across terminals $\mathrm{P} /+-\mathrm{P} 1$ to connect to the DC reactor. (Refer to page 51.).

(FR-HAL) (Refer to page 51.)
 (FR-HEL)
For the 75K or more, a DC reactor is supplied. Always install the reactor. (Refer to page 51.)

PLC


## Inverter (FR-F700)

The life of the inverter is influenced by ambient temperature. The ambient temperature should be as low as possible within the permissible range. (Refer to page 8.) This must be noted especially when the inverter is installed in an enclosure.
Wrong wiring might lead to damage of the inverter. The control signal lines must be kept fully away from the main circuit to protect them from noise.

The load torque of a motor-driven machine generally changes depending on speed. On the other hand, motor output is proportional to the product of load torque and speed as indicated in the following formula, and therefore, necessary motor output varies with speed.

Motor output $\mathrm{P}=\mathrm{T} \times \mathrm{N} /(9550 \times \eta)[\mathrm{kW}]$
T : Motor shaft-equivalent load torque $[\mathrm{N} \cdot \mathrm{m}]$
N : Motor speed [r/min]
$\eta$ : Machine efficiency

When this motor is operated by the inverter, the inverter output provides the frequency $f$ appropriate to the motor speed, and the then output voltage V is determined by a " $\mathrm{V} / \mathrm{f}=$ constant" pattern in the case of a constant-torque load.
For example, when the motor is operated at middle speed, $f$, i.e. output voltage V , decreases, and therefore, the inverter output power $\mathrm{V} \times I$ reduces if the output current $I$ is constant.
Proportionately, the inverter input current decreases and the power consumption reduces. Namely, when the motor output reduces, the input power of the inverter also decreases as a matter of course.
The fundamental principle of energy saving by the inverter is to eliminate wasted power consumption by minimizing loss caused by the other devices and minimizing the motor output as compared to the other system (for example, commercial power supply operation or secondary resistance control of wound-rotor motor). A maximum energy saving effect is produced on a fan, pump or like by the variable-torque load characteristic that reduces load torque as speed decreases.

Motor speed control enables substantial energy-saving operation as compared to commercial power supply operation.


For example, when a 15 kW motor is operated at $60 \%$ air volume and the power charge is $17 \mathrm{yen} / \mathrm{kW} \cdot \mathrm{h}$, the power charge as much as below can be saved in a year.

## (1)Damper control

$15 \mathrm{~kW} \times 0.9 \times 17$ yen $\times 24 \mathrm{~h} \times 365$ days $\fallingdotseq 2.01$ million yen (2)Inverter control
$15 \mathrm{~kW} \times 0.3 \times 17$ yen $\times 24 \mathrm{~h} \times 365$ days $\fallingdotseq 0.67$ million yen
(1) - (2) = energy-saving effect Approx. 1.34 million yen

$$
4-2+3
$$

## Rating

## －200V class

| Type FR－F720－■口K | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 | 90 | 110 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applied motor capacity（kW）＊1 | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 | 90 | 110 |
| Rated capacity（kVA）＊2 | 1.6 | 2.7 | 3.7 | 5.8 | 8.8 | 11.8 | 17.1 | 22.1 | 27 | 32 | 43 | 53 | 65 | 81 | 110 | 132 | 165 |
| 喜 Rated current（A）＊3 | $\begin{gathered} \hline 4.2 \\ (3.6) \\ \hline \end{gathered}$ | $\begin{array}{\|c} \hline 7.0 \\ (6.0) \\ \hline \end{array}$ | $\begin{array}{\|c} \hline 9.6 \\ (8.2) \end{array}$ | $\begin{aligned} & 15.2 \\ & (13) \end{aligned}$ | $\begin{gathered} \hline 23 \\ (20) \end{gathered}$ | $\begin{gathered} \hline 31 \\ (26) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 45 \\ (38) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 58 \\ (49) \end{gathered}$ | $\begin{gathered} \hline 70 \\ (60) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 85 \\ (72) \end{gathered}$ | $\begin{aligned} & \hline 114 \\ & (97) \end{aligned}$ | $\begin{gathered} \hline 140 \\ (119) \end{gathered}$ | $\begin{gathered} \hline 170 \\ (145) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 212 \\ (180) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 288 \\ (244) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 346 \\ (294) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 432 \\ (367) \\ \hline \end{gathered}$ |
| O Overload current rating＊4 | 120\％60s， $150 \%$ 3s（inverse time characteristics） |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Voltage＊5 | Three－phase 200 to 240 V |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 긍 Rated input AC voltage／frequency | Three－phase 200 to $220 \mathrm{~V} 50 \mathrm{~Hz}, 200$ to 240 V 60 Hz |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Permissible AC voltage fluctuation | 170 to $242 \mathrm{~V} 50 \mathrm{~Hz}, 170$ to 264 V 60 Hz |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ¢－Permissible frequency fluctuation | $\pm 5 \%$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ¢ Power supply system capacity（kVA）＊6 | 2.5 | 4.5 | 5.5 | 9 | 12 | 17 | 20 | 28 | 34 | 41 | 52 | 65 | 79 | 99 | 110 | 132 | 165 |
| Protective structure（JEM 1030）＊8 | Enclosed type（IP20）＊7 |  |  |  |  |  |  |  |  |  | Open type（IP00） |  |  |  |  |  |  |
| Cooling system | Self－cooling |  | Forced air cooling |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approx．mass（kg） | 1.8 | 2.2 | 3.5 | 3.5 | 3.5 | 6.5 | 6.5 | 7.5 | 13 | 13 | 14 | 23 | 35 | 35 | 67 | 70 | 70 |

## $\bullet 400 \mathrm{~V}$ class

| Type FR－F740－■ $\square$ K | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 |  | 15 |  | 18.5 | 22 | 30 | 37 | 45 | 55 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applied motor capacity（kW）＊1 | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 |  | 15 |  | 18.5 | 22 | 30 | 37 | 45 | 55 |
| Rated capacity（kVA）＊2 | 1.6 | 2.7 | 3.7 | 5.8 | 8.8 | 12.2 | － 17.5 |  | 22.1 |  | 26.7 | 32.8 | 43.4 | 53.3 | 64.8 | 80.8 |
| 茶 Rated current（A）＊3 | $\begin{gathered} \hline 2.1 \\ (1.8) \end{gathered}$ | $\begin{gathered} \hline 3.5 \\ (3.0) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 4.8 \\ (4.1) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 7.6 \\ (6.4) \end{gathered}$ | $\begin{aligned} & \hline 11.5 \\ & (9.8) \end{aligned}$ | $\begin{gathered} 16 \\ (13) \end{gathered}$ | $\begin{gathered} 23 \\ (19) \end{gathered}$ |  | $\begin{gathered} 29 \\ (24) \\ \hline \end{gathered}$ |  | $\begin{gathered} \hline 35 \\ (30) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 43 \\ (36) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 57 \\ (48) \end{gathered}$ | $\begin{gathered} \hline 70 \\ (60) \end{gathered}$ | $\begin{gathered} \hline 85 \\ (72) \\ \hline \end{gathered}$ | $\begin{aligned} & 106 \\ & (90) \end{aligned}$ |
| 0 Overload current rating＊4 | 120\％60s， $150 \%$ 3s（inverse time characteristics） |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Voltage＊5 | Three－phase 380 to 480V |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 入 Rated input AC voltage／frequency | Three－phase 380 to $480 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| O Permissible AC voltage fluctuation | d 323 to $528 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$ | $\pm$ 迆 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 Per <br> 0 Power supply system capacity（kVA）＊6 | 2.5 | 4.5 | 5.5 | 9 | 12 | 17 | 20 |  | 28 |  | 34 | 41 | 52 | 66 | 80 | 100 |
| Protective structure（JEM 1030）＊8 | Enclosed type（IP20）＊7 |  |  |  |  |  |  |  |  |  |  |  |  | Open type（IP00） |  |  |
| Cooling system | Self－cooling |  |  | Forced air cooling |  |  |  |  |  |  |  |  |  |  |  |  |
| Approx．mass（kg） | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 6.5 | 6.5 |  | 7.5 |  | 7.5 | 13 | 13 | 23 | 35 | 35 |
| Type FR－F740－प口K | 75 | 90 | 110 | 132 | 160 | 185 | 220 | 250 |  | 280 | 315 | 355 | 400 | 450 | 500 | 560 |
| Applied motor capacity（kW）＊1 | 75 | 90 | 110 | 132 | 160 | 185 | 220 | 250 |  | 280 | 315 | 355 | 400 | 450 | 500 | 560 |
| Rated capacity（kVA）＊2 | 110 | 137 | 165 | 198 | 247 | 275 | 329 | 366 |  | 416 | 464 | 520 | 586 | 659 | 733 | 833 |
| 蒙 Rated current（A）＊3 | $\begin{gathered} \hline 144 \\ (122) \end{gathered}$ | $\begin{gathered} 180 \\ (153) \end{gathered}$ | $\begin{gathered} 216 \\ (183) \end{gathered}$ | $\begin{array}{\|c} \hline 260 \\ (221) \end{array}$ | $\begin{gathered} 325 \\ (276) \end{gathered}$ | $\begin{gathered} 361 \\ (306) \end{gathered}$ | $\begin{gathered} 432 \\ (367) \end{gathered}$ | $\begin{gathered} \hline 481 \\ (408) \\ \hline \end{gathered}$ |  | $\begin{gathered} 547 \\ (464) \\ \hline \end{gathered}$ | $\begin{array}{l\|l} \hline 7) & \begin{array}{c} 610 \\ (518) \end{array} \end{array}$ | $\begin{gathered} 683 \\ (580) \\ \hline \end{gathered}$ | $\begin{array}{r} 770 \\ (654) \\ \hline \end{array}$ | $\begin{gathered} 866 \\ (736) \\ \hline \end{gathered}$ | $\begin{array}{\|c} \hline 962 \\ (817) \\ \hline \end{array}$ | $\begin{array}{r} 1094 \\ (929) \\ \hline \end{array}$ |
| $\bigcirc$ Overload current rating＊4 | 120\％60s， $150 \%$ 3s（inverse time characteristics） |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Voltage＊5 | Three－phase 380 to 480V |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 入 Rated input AC voltage／frequency | Three－phase 380 to $480 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| O Permissible AC voltage fluctuation | 323 to $528 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\stackrel{ \pm}{\otimes}$ Permissible frequency fluctuation | $\pm 5 \%$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 110 | 137 | 165 | 198 | 247 | 275 | 329 | 366 |  | 416 | 464 | 520 | 586 | 659 | 733 | 833 |
| Protective structure（JEM 1030）＊8 | Open type（IP00） |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cooling system | Forced air cooling |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approx．mass（kg） | 37 | 50 | 57 | 72 | 72 | 110 | 110 | 175 |  | 175 | 175 | 260 | 260 | 370 | 370 | 370 |

＊1．The applied motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi 4－pole standard motor．
＊2．The rated output capacity indicated assumes that the output voltage is 220 V for 200 V class and 440 V for 400 V class．
＊3．When operating the inverter with the carrier frequency set to 3 kHz or more，the carrier frequency automatically decreases if the inverter output current exceeds the value in parenthesis of the rated current．This may cause the motor noise to increase．
＊4．The \％value of the overload current rating indicated is the ratio of the overload current to the inverter＇s rated output current．For repeated duty， allow time for the inverter and motor to return to or below the temperatures under $100 \%$ load．
＊5．The maximum output voltage does not exceed the power supply voltage．The maximum output voltage can be changed within the setting range．
However，the pulse voltage value of the inverter output side voltage remains unchanged at about $\sqrt{2}$ that of the power supply．
＊6．The power supply capacity varies with the value of the power supply side inverter impedance（including those of the input reactor and cables）．
＊7．When the hook of the inverter front cover is cut off for installation of the plug－in option，the inverter changes to an open type（IP00）．
＊8．FR－DU07 ：IP40（Except for the PU connector）．

Common specifications

|  | Control system |  | High carrier frequency PWM control (V/F control)/optimum excitation control/simple magnetic flux vector control |
| :---: | :---: | :---: | :---: |
|  | Output frequency range |  | 0.5 to 400 Hz |
|  | Frequency setting resolution | Analog input | $0.015 \mathrm{~Hz} / 0$ to 60 Hz (terminal 2, 4: 0 to $10 \mathrm{~V} / 12$ bit) $0.03 \mathrm{~Hz} / 0$ to 60 Hz (terminal $2,4: 0$ to $5 \mathrm{~V} / 11$ bit, 0 to $20 \mathrm{~mA} / 11$ bit, terminal $1: 0$ to $\pm 10 \mathrm{~V} / 12$ bit) $0.06 \mathrm{~Hz} / 0$ to 60 Hz (terminal $1: 0$ to $\pm 5 \mathrm{~V} / 11$ bit) |
| $\frac{.0}{\mathbf{0}}$ |  | Digital input | 0.01 Hz |
|  | Frequency accuracy | Analog input | Within $\pm 0.2 \%$ of the max. output frequency $\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$ |
| $0$ |  | Digital input | Within $0.01 \%$ of the set output frequency |
|  | Voltage/frequency characteristics |  | Base frequency can be set from 0 to 400 Hz Constant torque/variable torque pattern or adjustable 5 points V/F can be selected |
| © | Starting torque |  | $120 \%(3 \mathrm{~Hz})$ when set to simple magnetic flux vector control and slip compensation |
|  | Acceleration/deceleration time setting |  | 0 to 3600 s (acceleration and deceleration can be set individually), linear or S-pattern acceleration/deceleration mode can be selected. |
|  | DC injection brake |  | Operation frequency (0 to 120Hz), operation time (0 to 10s), operation voltage (0 to 30\%) variable |
|  | Stall prevention operation level |  | Operation current level can be set ( 0 to $150 \%$ adjustable), whether to use the function or not can be selected |
|  | Frequency setting signal | Analog input | Terminal 2, 4: 0 to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 4$ to 20 mA can be selected Terminal 1: -10 to +10 V , -5 to 5 V can be selected |
|  |  | Digital input | Four-digit BCD or16-bit binary using the setting dial of the operation panel (when used with the option FR-A7AX) |
|  | Start signal |  | Available individually for forward rotation and reverse rotation. Start signal automatic self-holding input (3-wire input) can be selected. |
|  | Input signals |  | You can select any twelve signals using Pr. 178 to Pr. 189 (input terminal function selection) from among multi speed selection, second function selection, terminal 4 input selection, JOG operation selection, selection of automatic restart after instantaneous power failure, external thermal relay input, HC connection (inverter operation enable signal), HC connection (instantaneous power failure detection), PU operation/external inter lock signal , PID control enable terminal, PU operation, external operation switchover, output stop, start self-holding selection, forward rotation command, reverse rotation command, inverter reset, PTC thermistor input, PID forward reverse operation switchover, PU-NET operation switchover, NET-external operation switchover, command source switchover. |
|  | Operational functions |  | Maximum and minimum frequency settings, frequency jump operation, external thermal relay input selection, polarity reversible operation, automatic restart after instantaneous power failure operation, original operation continuation at instantaneous power failure, commercial power supply-inverter switchover operation, forward/reverse rotation prevention, operation mode selection, PID control, computer link operation (RS-485). |
|  |  |  | You can select any seven signals using Pr. 190 to Pr. 196 (output terminal function selection) from among inverter running, up-to-speed, instantaneous power failure /undervoltage, overload warning, output frequency detection, second output frequency detection, regenerative brake prealarm*4, electronic thermal relay function pre-alarm, PU operation mode, inverter operation ready, output current detection, zero current detection, PID lower limit, PID upper limit, PID forward rotation reverse rotation output, commercial power supply-inverter switchover MC1, commercial power supplyinverter switchover MC2, commercial power supply-inverter switchover MC3, fan fault output, heatsink overheat prealarm, inverter running start command on, deceleration at an instantaneous power failure, PID control activated, during retry, during PID output suspension, life alarm, alarm output 3 (power-off signal), power savings average value update timing, current average monitor, alarm output 2, maintenance timer alarm, remote output, minor failure output, alarm output. Open collector output ( 5 points), relay output ( 2 points) and alarm code of the inverter can be output ( 4 bit) from the open collector. |
|  |  | When used with the FR-A7AY, FR-A7AR (option) | You can select any seven signals using Pr. 313 to Pr. 319 (extension output terminal function selection) from among control circuit capacitor life, main circuit capacitor life, cooling fan life, inrush current limit circuit life and the above stated signals. (Only positive logic can be set for terminals of the FR-A7AR.) |
|  | Pulse/analog output |  | Selection can be made from output frequency, motor current (steady or peak value), output voltage, frequency setting value, running speed, converter output voltage (steady or peak value), electronic thermal relay function load factor, input power, output power, load meter, reference voltage output, motor load factor, power saving effect, regenerative brake duty* 4 , PID set value, PID measured value using Pr. 54 "FM terminal function selection (pulse train output)" and Pr. 158 "AM terminal function selection (analog output)". |
| $\begin{array}{\|l\|l} \hline \frac{0}{0} \\ \stackrel{0}{0} \end{array}$ | $\begin{aligned} & \text { PU } \\ & \text { (FR-DU07I } \\ & \text { FR-PU04) } \end{aligned}$ | Operating status | Output frequency, motor current (steady or peak value), output voltage, frequency setting, running speed, converter output voltage (steady or peak value), electronic thermal relay function load factor, input power, output power, load meter, cumulative energization time, actual operation time, motor load factor, cumulative energization power, power saving effect, cumulative saving power, regenerative brake duty* 4 , PID set point, PID measured value, PID deviation value, inverter I/O terminal monitor, input terminal option monitor*1, output terminal option monitor*1, option fitting status monitor $* 2$, terminal assignment status $* 2$ |
|  |  | Alarm definition | Alarm definition is displayed when the protective function is activated, the output voltage/current/frequency/cumulative energization time right before the protection function was activated and the past 8 alarm definitions are stored |
|  |  | Interactive guidance | Operation guide/trouble shooting with a help function*2 |
|  | tective/warning fun | ction | Overcurrent during acceleration, overcurrent during constant speed, overcurrent during deceleration, overvoltage during acceleration, overvoltage during constant speed, overvoltage during deceleration, inverter protection thermal operation, motor protection thermal operation, heatsink overheat, instantaneous power failure occurrence, undervoltage, input phase failure, motor overload, output side earth (ground) fault overcurrent, output phase failure, external thermal relay operation, PTC thermistor operation, option alarm, parameter error, PU disconnection, retry count excess, CPU alarm, operation panel power supply short circuit, 24VDC power output short circuit, output current detection value excess, inrush resistance overheat, communication alarm (inverter), analog input alarm, internal circuit alarm ( 15 V power supply), fan fault, overcurrent stall prevention, overvoltage stall prevention, electronic thermal relay function prealarm, PU stop, maintenance timer alarm*1, brake transistor alarm*4, parameter write error, copy operation error, operation panel lock, parameter copy alarm |
|  | Ambient temperature |  | $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ (non-freezing) |
|  | Ambient humidity |  | 90\%RH or less (non-condensing) |
|  | Storage temperature*3 |  | $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ |
|  | Atmosphere |  | Indoors (without corrosive gas, flammable gas, oil mist, dust and dirt etc.) |
|  | Altitude, vibration |  | Maximum 1000 m above seal level, $5.9 \mathrm{~m} / \mathrm{s}^{2}$ or less at 10 to 55 Hz (directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes) *5 |

*1. Can be displayed only on the operation panel (FR-DU07).
*2. Can be displayed only on the parameter unit (FR-PU04).
*3. Temperature applicable for a short period in transit, etc.
*4. Only the 75 K or more functions.
*5. $2.9 \mathrm{~m} / \mathrm{s}^{2}$ or less for the 185 K or more.


| Inverter Type | D | D1 |
| :---: | :---: | :---: |
| FR-F720-0.75K | 110 | 21 |
| FR-F720-1.5K | 125 | 36 |

- FR-F720-2.2K, 3.7K, 5.5K
- FR-F740-0.75K, 1.5K, 2.2K, 3.7K, 5.5K

(Unit: mm)
- FR-F720-7.5K, 11K, 15 K
- FR-F740-7.5K, 11K, 15K, 18.5K

- FR-F720-18.5K, 22K, 30K
- FR-F740-22K, 30K

* The FR-F720-30K is not provided with a wiring cover.
- FR-F720-37K, 45K, 55K
- FR-F740-37K, 45K, 55K

(Unit: mm)
- FR-F740-75K, 90K


| Inverter Type | W | W1 | H | H1 | D |
| :--- | :---: | :---: | :---: | :---: | :---: |
| FR-F740-75K | 435 | 380 | 525 | 550 | 250 |
| FR-F740-90K | 465 | 400 | 595 | 620 | 300 |

- DC reactor supplied


| Inverter Type | W | W1 | H | H1 | D | Mass <br> (kg) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| FR-F740-75K <br> (FR-HEL-H75K) | 140 | 120 | 320 | 295 | 185 | 16 |
| FR-F740-90K <br> (FR-HEL-H90K) | 150 | 130 | 340 | 310 | 190 | 20 |

(Unit: mm)

-FR-F720-75K, 90K, 110K
-FR-F740-132K, 160K

(Unit: mm)


| Inverter Type | W | W1 | W2 | H | H1 | H2 | H3 | D |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FR-F740-185K, 220K | 498 | 200 | 49 | 1010 | 985 | 15 | 10 | 380 |
| FR-F740-250K, 280K, 315K | 680 | 300 | 40 | 1010 | 985 | 15 | 10 | 380 |
| FR-F740-355K | 790 | 315 | 80 | 1330 | 1300 | 15 | 15 | 440 |

## - DC reactor supplied



* Remove the eye nut after installation of the product.

| Inverter Type | W | W1 | H | H1 | D | S | S1 | S2 | $\phi$ | Mass <br> (kg) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FR-F740-185K(FR-HEL-H185K) | 175 | 150 | 405 | 370 | 240 | M8 | M6 | - | M12 | 29 |
| FR-F740-22OK(FR-HEL-H220K) | 175 | 150 | 405 | 370 | 240 | M8 | M6 | M6 | M12 | 30 |
| FR-F740-250K(FR-HEL-H250K) | 190 | 165 | 440 | 400 | 250 | M8 | M8 | M8 | M12 | 35 |
| FR-F740-280K(FR-HEL-H280K) | 190 | 165 | 440 | 400 | 255 | M8 | M8 | M8 | M16 | 38 |
| FR-F740-315K(FR-HEL-H315K) | 210 | 185 | 495 | 450 | 250 | M10 | M8 | M8 | M16 | 42 |
| FR-F740-355K(FR-HEL-H355K) | 210 | 185 | 495 | 450 | 250 | M10 | M8 | M8 | M16 | 46 |

(Unit: mm)


- DC reactor supplied

* Remove the eye nut after installation of the product.

| Inverter Type | Mass <br> (kg) |
| :---: | :---: |
| FR-F740-400K(FR-HEL-H400K) | 50 |

(Unit: mm)

## - FR-F740-450K





- Operation panel (FR-DU07)
<Outline drawing> <Panel cutting dimension drawing>

(Unit: mm)
- Parameter unit (option) (FR-PU04)
<Outline drawing>
<Panel cutting dimension drawing>


[^0](Unit: mm)


## CAUTION

To prevent a malfunction due to noise, keep the signal cables more than 10 cm away from the power cables.
Be sure to use the inverter and motor after grounding (earthing) them.
This connection diagram assumes that the control circuit is sink logic (initial setting). Refer to the instruction manual for the connection in the case of source logic.



## CAUTION

The inverter will be damaged if power is applied to the inverter output terminals $(\mathrm{U}, \mathrm{V}, \mathrm{W})$. Never perform such wiring.
. $\square$ indicates that terminal functions can be selected fromPr. 178 to Pr. 196 (I/O terminal function selection)
*1. Low indicates that the open collector output transistor is on (conducts). High indicates that the transistor is off (does not conduct).
*2. Not output during inverter reset.

## Operation mode indication

PU: Lit to indicate PU operation mode.
EXT: Lit to indicate external operation mode.
NET: Lit to indicate network operation mode.

## Unit indication

Hz : Lit to indicate frequency.
A: Lit to indicate current.

- V: Lit to indicate voltage. (Flicker when the set frequency monitor is displayed.)

Lit to indicate monitoring mode.

## Monitor(4-digit LED)

Shows the frequency, parameter number, etc.


Rotation direction indication FWD: Lit during forward rotation REV: Lit during reverse rotation
On: Forward/reverse operation

Flickering: When the frequency command is not given even if the forward/reverse command is given.

## Monitor indication

 No function$\qquad$

## Setting dial

(Setting dial: Mitsubishi inverter dial)
Used to change the frequency setting and parameter values.



MODE
Mode switchover
Used to change each setting mode.

Operation command forward rotation
Operation command reverse rotation

Used to set each setting.
If pressed during operation, monitor changes as below;


## Operation mode switchover

Used to switch between the PU and external operation mode.
When using the external operation mode (operation using a separately connected frequency setting potentiometer and start signal), press this key to light up the EXT indication. (Change the Pr. 79 value to use the combined mode.) PU: PU operation mode
EXT: External operation mode

Basic operation



For simple variable-speed operation of the inverter, the initial setting of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter setting, change and check can be made from the operation panel (FR-DU07). For details of parameters, refer to the instruction manual.

## POINT

Only simple mode parameters are displayed by the initial setting of Pr. 160 User group read selection. Set Pr. 160 User group read selection as required.

## - Simple mode parameter

| Parameter Number | Name | Range | Increments | Initial Value | Refer to page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Torque boost | 0 to 30\% | 0.1\% | 6/4/3/2/1.5/1\%*2 | 28 |
| 1 | Maximum frequency | 0 to 120 Hz | 0.01 Hz | $120 / 60 \mathrm{Hz*} 1$ | 28 |
| 2 | Minimum frequency | 0 to 120 Hz | 0.01 Hz | OHz | 28 |
| 3 | Base frequency | 0 to 400 Hz | 0.01 Hz | 60 Hz | 28 |
| 4 | Multi-speed setting (high speed) | 0 to 400 Hz | 0.01 Hz | 60 Hz | 28 |
| 5 | Multi-speed setting (middle speed) | 0 to 400 Hz | 0.01 Hz | 30 Hz | 28 |
| 6 | Multi-speed setting (low speed) | 0 to 400 Hz | 0.01 Hz | 10 Hz | 28 |
| 7 | Acceleration time | 0 to 3600/360s | 0.1/0.01s | 5s/15s*3 | 28 |
| 8 | Deceleration time | 0 to 3600/360s | 0.1/0.01s | 10s/30s*3 | 28 |
| 9 | Electronic thermal O/L relay | 0 to 500/ 0 to 3600A*1 | 0.01/0.1A*1 | Rated inverter output current | 29 |
| 60 | Energy saving control selection | 0, 4, 9 | 1 | 0 | 34 |
| 79 | Operation mode selection | 0, 1, 2, 3, 4, 6, 7 | 1 | 0 | 37 |
| 125 | Terminal 2 frequency setting gain frequency | 0 to 400 Hz | 0.01 Hz | 60 Hz | 39 |
| 126 | Terminal 4 frequency setting gain frequency | 0 to 400 Hz | 0.01 Hz | 60 Hz | 39 |
| 160 | User group read selection | 0, 1,9999 | 1 | 9999 | 40 |

## - Extended mode parameter

## Remarks

The parameters marked with © indicate simple mode parameters.
The shaded parameters in the table allow its setting to be changed during operation even if "0" (initial value) is set in $\operatorname{Pr} .77$
Parameter write selection.

| Function | Parameters | Name | Setting Range | Increments | Initial Value | Refer to page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 <br> 0 <br> 0 <br> 0 <br> 1 <br> 1 <br> 0 <br> 0 <br> 0 <br> 0 | ( 0 | Torque boost | 0 to 30\% | 0.1\% | 6/4/3/2/1.5/1\%*2 | 28 |
|  | © 1 | Maximum frequency | 0 to 120 Hz | 0.01 Hz | 120/60Hz*1 | 28 |
|  | (0) 2 | Minimum frequency | 0 to 120Hz | 0.01 Hz | 0Hz | 28 |
|  | © 3 | Base frequency | 0 to 400 Hz | 0.01 Hz | 60 Hz | 28 |
|  | © 4 | Multi-speed setting (high speed) | 0 to 400 Hz | 0.01 Hz | 60 Hz | 28 |
|  | (0) 5 | Multi-speed setting (middle speed) | 0 to 400Hz | 0.01 Hz | 30 Hz | 28 |
|  | (0) 6 | Multi-speed setting (low speed) | 0 to 400Hz | 0.01 Hz | 10Hz | 28 |
|  | © 7 | Acceleration time | 0 to 3600/360s | 0.1/0.01s | 5s/15s*3 | 28 |
|  | © 8 | Deceleration time | 0 to 3600/ 360s | 0.1/0.01s | 10s/30s*3 | 28 |
|  | © 9 | Electronic thermal O/L relay | 0 to 500/ 0 to 3600A*1 | 0.01/0.1A* ${ }^{*}$ | Rated inverter output current | 29 |
|  | 10 | DC injection brake operation frequency | 0 to 120Hz, 9999 | 0.01 Hz | 3 Hz | 29 |
|  | 11 | DC injection brake operation time | 0 to 10s | 0.1 s | 0.5 s | 29 |
|  | 12 | DC injection brake operation voltage | 0 to 30\% | 0.1\% | 4/2/1\%*4 | 29 |
| - | 13 | Starting frequency | 0 to 60 Hz | 0.01 Hz | 0.5 Hz | 29 |
| - | 14 | Load pattern selection | 0, 1 | 1 | 1 | 29 |
|  | 15 | Jog frequency | 0 to 400Hz | 0.01 Hz | 5 Hz | 29 |
|  | 16 | Jog acceleration/deceleration time | 0 to 3600/360s | 0.1/0.01s | 0.5s | 29 |

[^1]| Function | Parameters | Name | Setting Range | Increments | Initial Value | Refer to page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 17 | MRS input selection | 0, 2 | 1 | 0 | 29 |
| - | 18 | High speed maximum frequency | 120 to 400 Hz | 0.01 Hz | 120/60Hz*1 | 28 |
| - | 19 | Base frequency voltage | 0 to 1000V, 8888, 9999 | 0.1 V | 9999 | 28 |
|  | 20 | Acceleration/deceleration reference frequency | 1 to 400 Hz | 0.01 Hz | 60 Hz | 28 |
|  | 21 | Acceleration/deceleration time increments | 0, 1 | 1 | 0 | 28 |
|  | 22 | Stall prevention operation level | 0 to 150\%, 9999 | 0.1\% | 120\% | 30 |
|  | 23 | Stall prevention operation level compensation factor at double speed | 0 to 200\%, 9999 | 0.1\% | 9999 | 30 |
|  | 24 to 27 | Multi-speed setting 4 speed to 7 speed | 0 to $400 \mathrm{~Hz}, 9999$ | 0.01 Hz | 9999 | 28 |
| - | 28 | Multi-speed input compensation selection | 0, 1 | 1 | 0 | 30 |
| - | 29 | Acceleration/deceleration pattern selection | 0, 1, 2, 3 | 1 | 0 | 30 |
| - | 30 | Regenerative function selection | 0, 2/0, 1, 2*1 | 1 | 0 | 31 |
|  | 31 | Frequency jump 1A | 0 to $400 \mathrm{~Hz}, 9999$ | 0.01 Hz | 9999 | 31 |
|  | 32 | Frequency jump 1B | 0 to $400 \mathrm{~Hz}, 9999$ | 0.01 Hz | 9999 | 31 |
|  | 33 | Frequency jump 2A | 0 to $400 \mathrm{~Hz}, 9999$ | 0.01 Hz | 9999 | 31 |
|  | 34 | Frequency jump 2B | 0 to 400 Hz , 9999 | 0.01 Hz | 9999 | 31 |
|  | 35 | Frequency jump 3A | 0 to $400 \mathrm{~Hz}, 9999$ | 0.01 Hz | 9999 | 31 |
|  | 36 | Frequency jump 3B | 0 to $400 \mathrm{~Hz}, 9999$ | 0.01 Hz | 9999 | 31 |
| - | 37 | Speed display | 0, 1 to 9998 | 1 | 0 | 31 |
|  | 41 | Up-to-frequency sensitivity | 0 to 100\% | 0.1\% | 10\% | 31 |
|  | 42 | Output frequency detection | 0 to 400 Hz | 0.01 Hz | 6 Hz | 31 |
|  | 43 | Output frequency detection for reverse rotation | 0 to $400 \mathrm{~Hz}, 9999$ | 0.01 Hz | 9999 | 31 |
| 0000000000000 | 44 | Second acceleration/deceleration time | 0 to 3600/360s | 0.1/0.01s | 5s | 28 |
|  | 45 | Second deceleration time | 0 to 3600/360s, 9999 | 0.1/0.01s | 9999 | 28 |
|  | 46 | Second torque boost | 0 to 30\%, 9999 | 0.1\% | 9999 | 28 |
|  | 47 | Second V/F (base frequency) | 0 to 400Hz, 9999 | 0.01 Hz | 9999 | 28 |
|  | 48 | Second stall prevention operation current | 0 to 150\% | 0.1\% | 120\% | 30 |
|  | 49 | Second stall prevention operation frequency | 0 to $400 \mathrm{~Hz}, 9999$ | 0.01 Hz | OHz | 30 |
|  | 50 | Second output frequency detection | 0 to 400Hz | 0.01 Hz | 30 Hz | 31 |
|  | 51 | Second electronic thermal O/L relay | $\begin{aligned} & \hline 0 \text { to 500A, } 9999 \text { / } \\ & 0 \text { to } 3600 \mathrm{~A}, 9999 * 1 \end{aligned}$ | 0.01/0.1 ${ }^{*}{ }^{1}$ | 9999 | 29 |
|  | 52 | DU/PU main display data selection | $\begin{aligned} & 0,5,6,8 \text { to } 14,17,20,23 \\ & \text { to } 25,50 \text { to } 57,100 \end{aligned}$ | 1 | 0 | 32 |
|  | 54 | FM terminal function selection | $\begin{aligned} & 1 \text { to } 3,5,6,8 \text { to } 14,17,21 \text {, } \\ & 24,50,52,53 \end{aligned}$ | 1 | 1 | 32 |
|  | 55 | Frequency monitoring reference | 0 to 400Hz | 0.01 Hz | 60 Hz | 32 |
|  | 56 | Current monitoring reference | 0 to 500/0 to 3600A*1 | 0.01/0.1 ${ }^{*}{ }^{1}$ | Rated inverter output current | 32 |
|  | 57 | Restart coasting time | $\begin{aligned} & 0,0.1 \text { to } 5 \mathrm{~s}, 9999 / \\ & 0,0.1 \text { to } 30 \mathrm{~s}, 9999 * 1 \end{aligned}$ | 0.1 s | 9999 | 33 |
|  | 58 | Restart cushion time | 0 to 60s | 0.1 s | 1s | 33 |
| - | 59 | Remote function selection | 0, 1, 2, 3 | 1 | 0 | 33 |
| - | (0) 60 | Energy saving control selection | 0, 4, 9 | 1 | 0 | 34 |
| - | 65 | Retry selection | 0 to 5 | 1 | 0 | 34 |

[^2]| Function | Parameters | Name | Setting Range | Increments | Initial Value | Refer to page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 66 | Stall prevention operation reduction starting frequency | 0 to 400 Hz | 0.01 Hz | 60 Hz | 30 |
| $\begin{aligned} & \text { त } \\ & \stackrel{0}{4} \end{aligned}$ | 67 | Number of retries at alarm occurrence | 0 to 10, 101 to 110 | 1 | 0 | 34 |
|  | 68 | Retry waiting time | 0 to 10s | 0.1 s | 1s | 34 |
|  | 69 | Retry count display erase | 0 | 1 | 0 | 34 |
| - | 70 | Special regenerative brake duty *2 | 0 to 10\% | 0.1\% | 0\% | 31 |
| - | 71 | Applied motor | 0, 1, 2, 20 | 1 | 0 | 34 |
| - | 72 | PWM frequency selection | 0 to 15/0 to 6, 25*1 | 1 | 2 | 35 |
| - | 73 | Analog input selection | 0 to 7, 10 to 17 | 1 | 1 | 35 |
| - | 74 | Input filter time constant | 0 to 8 | 1 | 1 | 36 |
| - | 75 | Reset selection/disconnected PU detection/PU stop selection | 0 to 3, 14 to 17 | 1 | 14 | 36 |
| - | 76 | Alarm code output selection | 0, 1, 2 | 1 | 0 | 36 |
| - | 77 | Parameter write selection | 0, 1, 2 | 1 | 0 | 36 |
| - | 78 | Reverse rotation prevention selection | 0, 1, 2 | 1 | 0 | 36 |
| - | © 79 | Operation mode selection | 0, 1, 2, 3, 4, 6, 7 | 1 | 0 | 37 |
|  | 80 | Motor capacity (simple magnetic flux vector control) | 0.4 to $55 \mathrm{~kW}, 9999$ /0 to 3600kW, 9999*1 | 0.01/0.1 $\mathrm{kW} *{ }^{1}$ | 9999 | 37 |
|  | 90 | Motor constant (R1) | 0 to $50 \Omega, 9999$ <br> /0 to $400 \mathrm{~m} \Omega$, 9999*1 | $\begin{gathered} 0.001 \Omega / \\ 0.01 \mathrm{~m} \Omega^{\star 1} \end{gathered}$ | 9999 | 37 |
|  | 100 | V/F1 (first frequency) | 0 to 400Hz, 9999 | 0.01 Hz | 9999 | 38 |
|  | 101 | V/F1 (first frequency voltage) | 0 to 1000V | 0.1 V | 0V | 38 |
|  | 102 | V/F2 (second frequency) | 0 to $400 \mathrm{~Hz}, 9999$ | 0.01 Hz | 9999 | 38 |
|  | 103 | V/F2 (second frequency voltage) | 0 to 1000 V | . 0.1 V | 0 V | 38 |
|  | 104 | V/F3 (third frequency) | 0 to $400 \mathrm{~Hz}, 9999$ | 0.01 Hz | 9999 | 38 |
|  | 105 | V/F3 (third frequency voltage) | 0 to 1000 V | 0.1 V | OV | 38 |
|  | 106 | V/F4 (fourth frequency) | 0 to $400 \mathrm{~Hz}, 9999$ | 0.01 Hz | 9999 | 38 |
|  | 107 | V/F4 (fourth frequency voltage) | 0 to 1000 V | 0.1 V | OV | 38 |
|  | 108 | V/F5 (fifth frequency) | 0 to $400 \mathrm{~Hz}, 9999$ | 0.01 Hz | 9999 | 38 |
|  | 109 | V/F5 (fifth frequency voltage) | 0 to 1000 V | 0.1 V | 0V | 38 |
|  | 117 | PU communication station | 0 to 31 | 1 | 0 | 38 |
|  | 118 | PU communication speed | 48, 96, 192, 384 | 1 | 192 | 38 |
|  | 119 | PU communication stop bit length. | 0, 1, 10, 11 | 1 | 1 | 38 |
|  | 120 | PU communication parity check | 0, 1, 2 | 1 | 2 | 38 |
|  | 121 | Number of PU communication retries | 0 to 10, 9999 | 1 | 1 | 38 |
|  | 122 | PU communication check time interval | 0, 0.1 to 999.8s, 9999 | 0.1 s | 9999 | 38 |
|  | 123 | PU communication waiting time setting | 0 to 150ms, 9999 | 1 | 9999 | 38 |
|  | 124 | PU communication CR/LF presence/ absence selection | 0, 1, 2 | 1 | 1 | 38 |
| - | (0) 125 | Terminal 2 frequency setting gain frequency | 0 to 400 Hz | 0.01 Hz | 60 Hz | 39 |
| - | © 126 | Terminal 4 frequency setting gain frequency | 0 to 400 Hz | 0.01 Hz | 60 Hz | 39 |
|  | 127 | PID control automatic switchover freqeuncy | 0 to 400Hz, 9999 | 0.01 Hz | 9999 | 39 |
|  | 128 | PID action selection | $\begin{aligned} & 10,11,20,21,50,51,60, \\ & 61 \end{aligned}$ | 1 | 10 | 39 |
|  | 129 | PID proportional band | 0.1 to 1000\%, 9999 | 0.1\% | 100\% | 39 |
|  | 130 | PID integral time | 0.1 to 3600s, 9999 | 0.1 s | 1s | 39 |
|  | 131 | PID upper limit | 0 to 100\%, 9999 | 0.1\% | 9999 | 39 |
|  | 132 | PID lower limit | 0 to 100\%, , 9999 | 0.1\% | 9999 | 39 |
|  | 133 | PID action set point | 0 to 100\%, 9999 | 0.01\% | 9999 | 39 |
|  | 134 | PID differential time | 0.01 to 10.00s, 9999 | 0.01s | 9999 | 39 |

[^3]| Function | Parameters | Name | Setting Range | Increments | Initial Value | Refer to page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 135 | Commercial power-supply switchover sequence output terminal selection | 0, 1 | 1 | 0 | 39 |
|  | 136 | MC switchover interlock time | 0 to 100s | 0.1s | 1s | 39 |
|  | 137 | Waiting time at a start | 0 to 100s | 0.1s | 0.5s | 39 |
|  | 138 | Commercial power-supply operation switchover selection at an alarm | 0, 1 | 1 | 0 | 39 |
|  | 139 | Automatic switchover frequency between inverter and commercial powersupply operation | 0 to $60 \mathrm{~Hz}, 9999$ | 0.01 Hz | 9999 | 39 |
|  | 140 | Backlash acceleration stopping frequency | 0 to 400 Hz | 0.01 Hz | 1Hz | 30 |
|  | 141 | Backlash acceleration stopping time | 0 to 360s | 0.1 s | 0.5s | 30 |
|  | 142 | Backlash deceleration stopping frequency | 0 to 400 Hz | 0.01 Hz | 1Hz | 30 |
|  | 143 | Backlash deceleration stopping time | 0 to 360s | 0.1s | 0.5s | 30 |
| - | 144 | Speed setting switchover | $\begin{aligned} & 0,2,4,6,8,10,102,104 \\ & 106,108,110 \end{aligned}$ | 1 | 4 | 31 |
| $\stackrel{\square}{\square}$ | 145 | PU display language selection | 0 to 7 | 1 | 0 | 40 |
|  | 148 | Stall prevention level at 0 V input. | 0 to 150\% | 0.1\% | 120\% | 30 |
|  | 149 | Stall prevention level at 10 V input. | 0 to 150\% | 0.1\% | 150\% | 30 |
|  | 150 | Output current detection level | 0 to 150\% | 0.1\% | 120\% | 40 |
|  | 151 | Output current detection signal delay time | 0 to 10s | 0.1 s | Os | 40 |
|  | 152 | Zero current detection level | 0 to 150\% | 0.1\% | 5\% | 40 |
|  | 153 | Zero current detection time | 0 to 1s | 0.01s | 0.5s | 40 |
| - | 154 | Voltage reduction selection during stall prevention operation | 0,1 + | (1) 1 | 1 | 30 |
| - | 155 | RT signal reflection time selection | $0,10 \sim$ | 1 | 0 | 40 |
| - | 156 | Stall prevention operation selection | 0 to 31, 100, 101 | 1 | 0 | 30 |
| - | 157 | OL signal output timer | 0 to 25s, 9999 | 0.1 s | Os | 30 |
| - | 158 | AM terminal function selection | $\begin{aligned} & 1 \text { to } 3,5,6,8 \text { to } 14,17,21 \text {, } \\ & 24,50,52,53 \end{aligned}$ | 1 | 1 | 32 |
| - | 159 | Automatic switchover ON range between commercial power-supply and inverter operation | 0 to 10Hz, 9999 | 0.01 Hz | 9999 | 39 |
| - | ©160 | User group read selection | 0, 1, 9999 | 1 | 9999 | 40 |
| - | 161 | Frequency setting/key lock operation selection | 0, 1, 10, 11 | 1 | 0 | 41 |
|  | 162 | Automatic restart after instantaneous power failure selection | 0, 1, 10, 11 | 1 | 0 | 33 |
|  | 163 | First cushion time for restart | 0 to 20s | 0.1 s | 0s | 33 |
|  | 164 | First cushion voltage for restart | 0 to 100\% | 0.1\% | 0\% | 33 |
|  | 165 | Stall prevention operation level for restart | 0 to 150\% | 0.1\% | 120\% | 33 |
|  | 166 | Output current detection signal retention time | 0 to 10s, 9999 | 0.1s | 0.1s | 40 |
|  | 167 | Output current detection operation selection | 0, 1 | 1 | 0 | 40 |
| - | 168 | Parameter for manufacturer setting. Do not set. |  |  |  |  |
| - | 169 |  |  |  |  |  |
|  | 170 | Cumulative power meter clear | 0, 10, 9999 | 1 | 9999 | 32 |
|  | 171 | Operation hour meter clear | 0,9999 | 1 | 9999 | 32 |
|  | 172 | User group registered display/batch clear | 9999, (0 to 16) | 1 | 0 | 40 |
|  | 173 | User group registration | 0 to 999, 9999 | 1 | 9999 | 40 |
|  | 174 | User group clear | 0 to 999, 9999 | 1 | 9999 | 40 |


| Function | Parameters | Name | Setting Range | Increments | Initial Value | Refer to page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 178 | STF terminal function selection | 0 to 8,10 to $12,14,16$, $24,25,60,62,64$ to 67, 9999 | 1 | 60 | 41 |
|  | 179 | STR terminal function selection | ```0 to 8, 10 to 12, 14, 16, 24, 25,61,62,64 to 67, 9999``` | 1 | 61 | 41 |
|  | 180 | RL terminal function selection | 0 to 8,10 to $12,14,16$, $24,25,62,64$ to 67,9999 | 1 | 0 | 41 |
|  | 181 | RM terminal function selection |  | 1 | 1 | 41 |
|  | 182 | RH terminal function selection |  | 1 | 2 | 41 |
|  | 183 | RT terminal function selection |  | 1 | 3 | 41 |
|  | 184 | AU terminal function selection | $\begin{aligned} & 0 \text { to } 8,10 \text { to } 12,14,16, \\ & 24,25,62 \text { to } 67,9999 \end{aligned}$ | 1 | 4 | 41 |
|  | 185 | JOG terminal function selection | 0 to 8,10 to $12,14,16$, <br> 24, 25, 62, 64 to 67, 9999 | 1 | 5 | 41 |
|  | 186 | CS terminal function selection |  | 1 | 6 | 41 |
|  | 187 | MRS terminal function selection |  | 1 | 24 | 41 |
|  | 188 | STOP terminal function selection |  | 1 | 25 | 41 |
|  | 189 | RES terminal function selection |  | 1 | 62 | 41 |
|  | 190 | RUN terminal function selection | 0 to $5,7,8,10$ to 19,25 , 26,45 to $47,64,70,90$ to $96,98,99,100$ to 105 , $107,108,110$ to 116,125 , 126, 145 to 147, 164, 170, 190 to 196, 198, 199, 9999 | 1 | 0 | 41 |
|  | 191 | SU terminal function selection |  | 1 | 1 | 41 |
|  | 192 | IPF terminal function selection |  | 1 | 2 | 41 |
|  | 193 | OL terminal function selection |  | 1 | 3 | 41 |
|  | 194 | FU terminal function selection |  | 1 | 4 | 41 |
|  | 195 | ABC1 terminal function selection | 0 to $5,7,8,10$ to 19, 25, 26, 45 to $47,64,70,90$, 91, 94 to $96,98,99,100$ to $105,107,108,110$ to 116 , $125,126,145$ to 147,164 , 170, 190, 191, 194 to 196, 198, 199, 9999 | 1 | 99 | 41 |
|  | 196 | ABC2 terminal function selection |  | - 1 | 9999 | 41 |
|  | 232 to 239 | Multi-speed setting 8 speed to 15 speed | 0 to $400 \mathrm{~Hz}, 9999$ | 0.01 Hz | 9999 | 28 |
| - | 240 | Soft-PWM operation selection | 0, 1 | 1 | 1 | 35 |
| - | 241 | Analog input display unit switchover | 0, 1 | 1 | 0 | 39 |
| - | 242 | Terminal 1 added compensation amount (terminal 2) | 0 to 100\% | 0.1\% | 100\% | 35 |
| - | 243 | Terminal 1 added compensation amount (terminal 4) | 0 to 100\% | 0.1\% | 75\% | 35 |
| - | 244 | Cooling fan operation selection | 0, 1 | 1 | 1 | 42 |
|  | 245 | Rated slip | 0 to 50\%, 9999 | 0.01\% | 9999 | 42 |
|  | 246 | Slip compensation time constant | 0.01 to 10s | 0.01s | 0.5 s | 42 |
|  | 247 | Constant-output region slip compensation selection | 0,9999 | 1 | 9999 | 42 |
| - | 250 | Stop selection | $\begin{aligned} & 0 \text { to } 100 \mathrm{~s}, 1000 \text { to } 1100 \mathrm{~s} \text {, } \\ & 8888,9999 \end{aligned}$ | 0.1s | 9999 | 42 |
| - | 251 | Output phase failure protection selection | 0, 1 | 1 | 1 | 42 |
|  | 252 | Override bias | 0 to 200\% | 0.1\% | 50\% | 35 |
|  | 253 | Override gain | 0 to 200\% | 0.1\% | 150\% | 35 |
|  | 255 | Life alarm status display | (0 to 15) | 1 | 0 | 42 |
|  | 256 | Inrush current limit circuit life display | (0 to 100\%) | 1\% | 100\% | 42 |
|  | 257 | Control circuit capacitor life display | (0 to 100\%) | 1\% | 100\% | 42 |
|  | 258 | Main circuit capacitor life display | (0 to 100\%) | 1\% | 100\% | 42 |
|  | 259 | Main circuit capacitor life measuring | 0, 1 | 1 | 0 | 42 |
| - | 260 | PWM frequency automatic switchover | 0, 1 | 1 | 1 | 35 |


| Function | Parameters | Name | Setting Range | Increments | Initial Value | Refer to page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 261 | Power failure stop selection | 0, 1, 2 | 1 | 0 | 43 |
|  | 262 | Subtracted frequency at deceleration start | 0 to 20 Hz | 0.01 Hz | 3 Hz | 43 |
|  | 263 | Subtraction starting frequency | 0 to 120Hz, 9999 | 0.01 Hz | 60 Hz | 43 |
|  | 264 | Power-failure deceleration time 1 | 0 to 3600/360s | 0.1/0.01s | 5s | 43 |
|  | 265 | Power-failure deceleration time 2 | 0 to 3600/360s, 9999 | 0.1/0.01s | 9999 | 43 |
|  | 266 | Power failure deceleration time switchover frequency | 0 to 400 Hz | 0.01 Hz | 60Hz | 43 |
| - | 267 | Terminal 4 input selection | 0, 1, 2 | 1 | 0 | 35 |
| - | 268 | Monitor decimal digits selection | 0, 1, 9999 | 1 | 9999 | 32 |
| - | 269 | Parameter for manufacturer setting. Do not set. |  |  |  |  |
| - | 299 | Rotation direction detection selection at restarting | 0, 1, 9999 | 1 | 9999 | 33 |
|  | 331 | RS-485 communication station | 0 to 31(0 to 247) | 1 | 0 | 38 |
|  | 332 | RS-485 communication speed | $\begin{aligned} & 3,6,12,24,48,96,192, \\ & 384 \end{aligned}$ | 1 | 96 | 38 |
|  | 333 | RS-485 communication stop bit length | 0, 1, 10, 11 | 1 | 1 | 38 |
|  | 334 | RS-485 communication parity check selection | 0, 1, 2 | 1 | 2 | 38 |
|  | 335 | RS-485 communication number of retries | 0 to 10, 9999 | 1 | 1 | 38 |
|  | 336 | RS-485 communication check time interval | 0, 0.1 to 999.8s, 9999 | $0.1 \mathrm{~s}$ | Os | 38 |
|  | 337 | RS-485 communication waiting time setting | 0 to $150 \mathrm{~ms}, 9999$ | 1 | 9999 | 38 |
|  | 338 | Communication operation command source | 0,1 - |  | 0 | 44 |
|  | 339 | Communication speed command source | 0, 1,2 | 1 | 0 | 44 |
|  | 340 | Communication startup mode selection | $0,1,2,10,12 \longrightarrow$ | 1 | 0 | 37 |
|  | 341 | RS-485 communication CR/LF selection | 0, 1, 2 | 1 | 1 | 38 |
|  | 342 | Communication EEPROM write selection | 0,1 | 1 | 0 | 38 |
|  | 343 | Communication error count | $-$ | 1 | 0 | 38 |
|  | 495 | Remote output selection | 0,1 | 1 | 0 | 44 |
|  | 496 | Remote output data 1 | 0 to 4095 | 1 | 0 | 44 |
|  | 497 | Remote output data 2 | 0 to 4095 | 1 | 0 | 44 |
|  | 503 | Maintenance timer | 0 (1 to 9998) | 1 | 0 | 44 |
|  | 504 | Maintenance timer alarm output set time | 0 to 9998, 9999 | 1 | 9999 | 44 |
|  | 549 | Protocol selection | 0, 1 | 1 | 0 | 38 |
|  | 550 | NET mode operation command source selection | 0, 1,9999 | 1 | 9999 | 44 |
|  | 551 | PU mode operation command source selection | 1,2 | 1 | 2 | 44 |
|  | 555 | Current average time | 0.1 to 1.0s | 0.1 s | 1s | 44 |
|  | 556 | Data output mask time | 0.0 to 20.0s | 0.1 s | 0s | 44 |
|  | 557 | Current average value monitor signal output reference current | 0 to 500/0 to 3600A*1 | 0.01/0.1A*1 | Rated inverter current | 44 |
| - | 563 | Energization time carrying-over times | 0 to 65535 | 1 | 0 | 32 |
| - | 564 | Operating time carrying-over times | 0 to 65535 | 1 | 0 | 32 |
| - | 571 | Holding time at a start | 0.0 to 10.0s, 9999 | 0.1 s | 9999 | 29 |
| 은 | 575 | Output interruption detection time | 0 to 3600s, 9999 | 0.1 s | 1s | 39 |
|  | 576 | Output interruption detection level | 0 to 400 Hz | 0.01 Hz | 0Hz | 39 |
|  | 577 | Output interruption release level | 900 to 1100\% | 0.1\% | 1000\% | 39 |
| - | 611 | Acceleration time at a restart | 0 to 3600s, 9999 | 0.1 s | 5/15s*1 | 33 |

[^4]| Function | Parameters | Name | Setting Range | Increments | Initial Value | Refer to page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 867 | AM output filter | 0 to 5s | 0.01s | 0.01s | 32 |
| - | 872 | Input phase failure protection selection | 0, 1 | 1 | 0 | 42 |
|  | 882 | Regeneration avoidance operation selection | 0, 1 | 1 | 0 | 45 |
|  | 883 | Regeneration avoidance operation level | 300 to 800 V | 0.1 V | 380V/760V*1 | 45 |
|  | 884 | Regeneration avoidance at deceleration detection sensitivity | 0 to 5 | 1 | 0 | 45 |
|  | 885 | Regeneration avoidance compensation frequency limit value | 0 to 10Hz, 9999 | 0.01 Hz | 6 Hz | 45 |
|  | 886 | Regeneration avoidance voltage gain | 0 to 200\% | 0.1\% | 100\% | 45 |
|  | 888 | Free parameter 1 | 0 to 9999 | 1 | 9999 | 45 |
|  | 889 | Free parameter 2 | 0 to 9999 | 1 | 9999 | 45 |
| Energy saving monitor | 891 | Cumulative power monitor digit shifted times | 0 to 4, 9999 | 1 | 9999 | 32 |
|  | 892 | Load factor | 30 to 150\% | 0.1\% | 100\% | 45 |
|  | 893 | Energy saving monitor reference (motor capacity) | 0.1 to $55 / 0$ to $3600 \mathrm{~kW} * 2$ | 0.01/0.1kW*2 | Inverter rated capacity | 45 |
|  | 894 | Control selection during commercial power-supply operation | 0, 1, 2, 3 | 1 | 0 | 45 |
|  | 895 | Power saving rate reference value | 0, 1, 9999 | 1 | 9999 | 45 |
|  | 896 | Power unit cost | 0 to 500, 9999 | 0.01 | 9999 | 45 |
|  | 897 | Power saving monitor average time | 0, 1 to 1000h, 9999 | 1 | 9999 | 45 |
|  | 898 | Power saving cumulative monitor clear | 0, 1, 10, 9999 | 1 | 9999 | 45 |
|  | 899 | Operation time rate (estimated value) | 0 to 100\%, 9999 | 0.1\% | 9999 | 45 |
|  | $\begin{gathered} \text { CO } \\ (900) \end{gathered}$ | FM terminal calibration | -0 0 | - | - | 46 |
|  | $\begin{gathered} \text { C1 } \\ (901) \end{gathered}$ | AM terminal calibration | - 0 | - | - | 46 |
|  | $\begin{gathered} \text { C2 } \\ (902) \end{gathered}$ | Terminal 2 frequency setting bias frequency | 0 to 400 Hz | 0.01 Hz | 0 Hz | 39 |
|  | $\begin{gathered} \text { C3 } \\ (902) \end{gathered}$ | Terminal 2 frequency setting bias | 0 to 300\% | 0.1\% | 0\% | 39 |
|  | $\begin{gathered} 125 \\ (903) \end{gathered}$ | Terminal 2 frequency setting gain frequency | 0 to 400 Hz | 0.01 Hz | 60 Hz | 39 |
|  | $\begin{gathered} \text { C4 } \\ (903) \end{gathered}$ | Terminal 2 frequency setting gain | 0 to 300\% | 0.1\% | 100\% | 39 |
|  | $\begin{gathered} \text { C5 } \\ (904) \end{gathered}$ | Terminal 4 frequency setting bias frequency | 0 to 400 Hz | 0.01 Hz | OHz | 39 |
|  | $\begin{gathered} \text { C6 } \\ (904) \end{gathered}$ | Terminal 4 frequency setting bias | 0 to 300\% | 0.1\% | 20\% | 39 |
|  | $\begin{gathered} 126 \\ (905) \end{gathered}$ | Terminal 4 frequency setting gain frequency | 0 to 400 Hz | 0.01 Hz | 60 Hz | 39 |
|  | $\begin{gathered} \text { C7 } \\ (905) \end{gathered}$ | Terminal 4 frequency setting gain | 0 to 300\% | 0.1\% | 100\% | 39 |
| - | 989 | Parameter copy alarm release | 10/100 | 1 | 10/100*2 | - |
| $\stackrel{\square}{\square}$ | 990 | PU buzzer control | 0, 1 | 1 | 1 | 46 |
|  | © 991 | PU contrast adjustment | 0 to 63 | 1 | 58 | 46 |
|  | Pr.CL | Parameter clear | 0, 1 | 1 | 0 | 46 |
|  | ALLC | All parameter clear | 0,1 | 1 | 0 | 46 |
|  | Er.CL | Alarm history clear | 0, 1 | 1 | 0 | 46 |
|  | PCPY | Parameter copy | 0, 1, 2, 3 | 1 | 0 | 46 |

*1 The initial value differs according to the voltage class. ( 200 V class / 400V class)
*2 Differ according to capacities. (55K or less/75K or more)

## Pr. 0

## Pr. $_{46}$

Pr. 0 Torque boost

## Manual torque boost

You can compensate for a voltage drop in the low-frequency region to improve motor torque reduction in the low-speed region.

- Motor torque in the low-frequency range can be adjusted to the load to increase the starting motor torque.
- The starting torque boost can be changed by switching terminal RT.
- When simple magnetic flux vector control is selected in $\operatorname{Pr} .80$, the settings of Pr. 0 and Pr. 46 are invalid.



## Maximum/minimum frequency

$Z$ Pr. 1 Maximum frequency 7 Pr. 2 Minimum frequency
Pr. 18 High speed maximum frequency
You can limit the motor speed.

- Clamp the upper and lower limits of the output frequency.
- When you want to perform operation above 120 Hz , set the upper limit of the output frequency to Pr. 18 .
(When Pr. 18 is set, Pr. 1 automatically switches to the frequency of Pr. 18. When Pr. 1 is set, Pr. 18 is automatically changed to the frequency set in Pr. 1.)



## $\mathrm{Pr}_{3}$



19, 47
Base frequency, voltage

## 7 Pr. 3 Base frequency

## Pr. 19 Base frequency voltage Pr. 47 Second V/F (base frequency)

- Used to adjust the inverter outputs (voltage, frequency) to the motor rating.
- When operating a standard motor, generally set the rated frequency of the motor to Pr. 3 Base frequency. When running the motor using commercial power supply-inverter switch-over operation, set Pr. 3 to the same value as the power supply frequency.
- When you want to change the base frequency when switching multiple motors with one inverter, use the Pr. 47 Second base frequency.
- Use Pr. 19 Base frequency voltage to set the base voltage (e.g. rated motor voltage).



## Pr. 4 to Pr. Pr. 24 to 27,232 to 239

## Multi-speed setting operation


7 Pr. 6 Multi-speed setting (low speed)

Pr. 24 Multi-speed setting (speed4) Pr. 26 Multi-speed setting (speed 6) Pr. 232 Multi-speed setting (speed 8) Pr. 234 Multi-speed setting (speed 10) Pr. 236 Multi-speed setting (speed 12) Pr. 238 Multi-speed setting (speed 14)

Can be used to change the preset speed in the parameter with the contact signals.
Any speed can be selected by merely turning on-off the contact signals (RH, RM, RL, REX signals).

- The inverter operates at frequencies set in Pr. 4 when RH signal is on, Pr. 5 when RM signal is on and Pr. 6 when RL signal is on.
- Frequency from speed 4 to speed 15 can be set according to the combination of the RH, RM, RL and REX signals. Set the running frequencies to Pr. 24 to Pr. 27, Pr. 232 to Pr. 239. (In the initial value setting, speed 4 to 15 are unavailable.)

*1 When turning RH, RM and RL off and REX on with "9999" set in Pr. 232 "multi speed setting ( 8 speed), the inverter operates at frequency set in Pr. 6.

Pr. 7, 8 Pr. 20, 21, 44, 45

## Acceleration/deceleration time setting

7 Pr. 7 Acceleration time
Z Pr. 8 Deceleration time

Pr. 20 Acceleration/deceleration reference frequency
Pr. 21 Acceleration/deceleration time increments Pr. 44 Second acceleration/deceleration time Pr. 45 Second deceleration time

- Used to set motor acceleration/deceleration time.
- Set a larger value for a slower speed increase/decrease or a smaller value for a faster speed increase/decrease.
- Use Pr. 7 Acceleration time to set the acceleration time required to reach Pr. 20 Acceleration/deceleration reference frequency from 0 Hz .
- Use Pr. 8 Deceleration time to set the deceleration time required to stop from the Pr. 20 Acceleration/deceleration reference frequency.




## Pr. 9

## Pr. 51

Motor protection from overheat (electronic thermal relay function)

P Pr. 9 Electronic thermal $0 / L$ relay Pr. 51 Second electronic thermal $0 / L$ relay
Set the current of the electronic overcurrent protection to protect the motor from overheat.This feature provides the optimum protective characteristics, including reduced motor cooling capability, at low speed.

- This function detects the overload (overheat) of the motor, stops the operation of the inverter's output transistor, and stops the output.
- Set the rated current [A] of the motor in Pr. 9 .
- When using a motor with an external thermal relay, etc., set " 0 " in Pr. 9 to make the electronic thermal relay function invalid. (Note that the output transistor protection of the inverter (E.THT) functions.)
- When using the Mitsubishi constant-torque motor

1) Set " 1 " in Pr. 71 .
(This provides a 100\% continuous torque characteristic in the low-speed range.)
2) Set the rated motor current in Pr. 9.

- When the RT signal is on, thermal protection is provided based on the Pr. 51 setting.
Use this function when rotating two motors of different rated currents individually by a single inverter. (When rotating two motors together, use external thermal relays.)


## Pr. 10 to 12 DC injection brake

Pr: 10 DC injection brake operation frequency
Pr. 11 DC injection brake operation time Ps:12 DC injection brake operation voltage
The DC injection brake can be operated at a motor stop to adjust the stop timing and braking torque.


$\left.$| Pr. 12 Initial |
| :---: | :---: | :---: | :---: |
| Value |$\quad$| When |
| :---: |
| Using the |
| Mitsubish |
| Constant |
| Torque |
| Motor |$\quad$| When |
| :---: |
| Using |
| the |
| Energy |
| Saving |
| Motor | \right\rvert\,

* If the Pr. 71 initial value is changed to the setting for use with a constant-torque motor, the Pr. 12 setting changes to the corresponding value in the above table.


## Pr. <br> 13, 571 <br> Starting frequency

## Pr. 13 Starting frequency

Pr. 571 Holding time at a start
You can set the starting frequency and hold the set starting frequency for a certain period of time.
Set these functions when you need the starting torque or want smooth motor drive at a start


## Pr. 14 V/F pattern matching applications

Pr. 14 Load pattern selection
You can select the optimum output characteristic (V/F characteristic) for the application and load characteristics.

Setting "0"
For constant-torque load
Setting "1" (initial value)


For variable-torque load


## 15, 16 Jog operation

Pr. 15 Jog frequency
Pr. 16 Jog acceleration/deceleration time
You can set the frequency and acceleration/decelertion time for jog operation. Jog operation can be performed from either the outside or PU.
Can be used for conveyor positioning, test operation, etc.

(Pr. 17 Logic selection of output stop signal (MRS)

## Pr. 17 MRS input selection

The inverter output can be shut off by the MRS signal. The logic of the MRS signal can also be selected.


Pr. $18 \rightarrow$ Refer to the section about Pr. 1, Pr. 2
Pr. $19 \rightarrow$ Refer to the section about Pr. 3.
Pr. 20, $21 \rightarrow$ Refer to the section about $\operatorname{Pr} .7, \operatorname{Pr} 8$
 $22,23,48,49,66,148,149,154,156,157$

## Stall prevention operation

Pr. 22 Stall prevention operation level
Pr. 23 Stall prevention operation level compensation factor at double speed Pr: 48 Second stall prevention operation current Pr. 49 Second stall prevention operation frequency
Pr. 66 Stall prevention operation reduction starting frequency Pr. 148 Stall prevention level at 0V input. Pr. 149 Stall prevention level at 10V input. Pr. 154 Voltage reduction selection during $\overline{\text { stall prevention operation }}$ Pr:156 Stall prevention operation selection Pr. 157 OL signal output timer
This function monitors the output current and automatically changes the output frequency to prevent the inverter from coming to an alarm stop due to overcurrent, overvoltage, etc. It can also limit stall prevention and fast-response current limit operation during acceleration/deceleration, driving or regeneration.

- Stall prevention

If the output current exceeds the limit value, the output frequency of the inverter is automatically varied to reduce the output current. Also the second stall prevention function can restrict the output frequency range in which the stall prevention function is valid. (Pr.49)

- Fast-response current limit

If the current exceeds the limit value, the output of the inverter is shut off to prevent an overcurrent.

- Set in Pr. 22 the ratio of the output current to the rated inverter current at which stall prevention operation will be performed. Normally set this parameter to120\% (initial value).
- When "9999" is set in Pr. 22, stall prevention operation level can be changed by the signal to the auxiliary input terminal (terminal 1). For the adjustment of bias/gain of analog signal, use Pr. 148 and Pr. 149.
- During high-speed operation above the rated motor frequency, acceleration may not be made because the motor current does not increase. If operation is performed in a high frequency range, the current at motor lockup becomes smaller than the rated output current of the inverter, and the protective function (OL) is not executed if the motor is at a stop.
To improve the operating characteristics of the motor in this case, the stall prevention level can be reduced in the high frequency region. This function is effective for performing operation up to the high speed region on a centrifugal separator etc. Normally, set 60 Hz in Pr. 66 and $100 \%$ in Pr. 23.
- By setting "9999" (initial value) in Pr. 23 Stall prevention operation level compensation factor at double speed, the stall prevention operation level is constant at the Pr. 22 setting up to 400 Hz .

- Setting "9999" in Pr. 49 Second stall prevention operation frequency and turning the RT signal on make Pr. 48 Second stall prevention operation current valid.
- The stall prevention operation level from OHz to the output frequency set in Pr. 49 can be set in Pr. 48.


| Pr. 49 Setting | Operation |
| :---: | :--- |
| 0 (initial value) | Second stall prevention function is not activated |
| 0.01 Hz to 400 Hz | If the output frequency is less than the frequency set in <br> Pr. 49, the second stall prevention operation function is <br> activated. (during constant speed or deceleration) |
| 9999 | The second stall prevention function is performed according to <br> the RT signal. <br> RT signal on ....... Stall level Pr. 48 <br> RT signal off ...... Stall level Pr. 22 |

- Stall prevention operation and fast response current restriction function can be restricted according to the operation condition using Pr. 156.


## Pr. <br> 28 Input compensation of multi- speed and remote setting

Pr. $\mathbf{2 4}$ to $\mathbf{2 7} \rightarrow$ Refer to the section about Pr. 4 to Pr. 6

Pr. 28 Multi-speed input compensation selection
By inputting the frequency setting compensation signal (terminal 1 , 2), the speed (frequency) can be compensated for relative to the multi-speed setting or the speed setting by remote setting function.

| Pr. 28 Setting | Definition |
| :---: | :--- |
| 0 (initial value) | Without compensation |
| 1 | With compensation |

Pr.29, 140 to 143

Acceleration/ deceleration pattern and back lash measures

Pr. 29 Acceleration/deceleration pattern selection Pr. 140 Backlash acceleration stopping frequency Pr. 141 Backlash acceleration stopping time Pr.142 Backlash deceleration stopping frequency Pr. 143 Backlash deceleration stopping time
You can set the acceleration/deceleration pattern suitable for application.
You can also set the backlash measures that stop acceleration/ deceleration once at the parameter-set frequency and time during acceleration/deceleration.

- Linear acceleration/deceleration (setting "0", initial value)
- When the frequency is changed for acceleration, deceleration, etc. in inverter operation, the output frequency is changed linearly (linear acceleration/deceleration) to reach the set frequency without straining the motor and inverter.
- S-pattern acceleration/deceleration A (setting "1")
For machine tool spindle applications, etc.
Use when acceleration/deceleration must be made in a short time to a high-speed region of not lower than base frequency.
- S-pattern acceleration/deceleration B (setting "2")
For prevention of load shifting in conveyor and other applications Since acceleration/deceleration is always made in an $S$ shape from current frequency (f2) to target frequency (f1), this function eases shock produced at acceleration/ deceleration and is effective for load collapse prevention, etc.
- Backlash measures (setting "3", Pr. 140 to Pr. 143 )
To avoid backlash, acceleration/ deceleration is temporarily stopped. Set the acceleration/deceleration stopping frequency and time in Pr . 140 to Pr. 143.


## Selection of regeneration unit

Pr. 30 Regenerative function selection Pr. 70 Special regenerative brake duty *

- Use the high power factor converter (FR-HC) to reduce harmonics, improve the power factor, or continuously use the regenerative mode.
- For the 75 K or more, use the brake unit MT-BU5 or BR5 when the regenerative brake duty is need to be increased due to frequent starts and stops. Use the high power factor converter MT-HC to reduce harmonics, improve the power factor, or continuously use the regenerative mode.
<55K or less>

| Pr. 30 Setting | Regeneration Unit |
| :---: | :--- |
| 0 (initial value) | Brake unit (FR-BU, BU) |
| 2 | High power factor converter (FR-HC), <br> power regeneration common converter (FR-CV) |

<75K or more>

| Pr.30 Setting | Pr. 70 Setting * | Regeneration Unit |
| :---: | :---: | :--- |
| 0 (initial value) | - | Not used |
| 1 | $0 \%$ | Power regeneration converter (MT-RC) |
|  | $10 \%$ | Brake unit (MT-BU5) |
| 2 | - | High power factor converter (MT-HC) |

* Pr. 70 Special regenerative brake duty can be set for the 75 K or more inverter.

Pr.r. 31 to 36

## Avoid mechanical resonance points (frequency jump)

Pr. 31 Frequency jump $1 A$
Pr. 33 Frequency jump 2A Pr. 35 Frequency jump $3 A$ When it is desired to avoid resonance attributable to the natural frequency of a mechanical system, these parameters allow resonant frequencies to be jumped.

- Up to three areas may be set, with the jump frequencies set to either the top or bottom point of each area.
- The value set to $1 \mathrm{~A}, 2 \mathrm{~A}$ or 3 A is a jump point and operation in the jump zone is performed at these frequencies.
- Frequency jump is not performed if the initial value is set to "9999".
- During acceleration/deceleration, the running frequency within the set area is valid.


## Pr. 37 Speed display

## Speed display and speed setting

You can change the PU (FR-DU07) monitor display or frequency setting to motor speed or machine speed.

- When the running speed monitor is selected, each monitor and setting are determined according to the combination of Pr. 37 and Pr. 144. (The units within the thick frame are the initial values.)

| $\text { Pr. } 37$ <br> Setting | Pr. 144 <br> Setting | $\begin{aligned} & \text { Output } \\ & \text { Frequency } \\ & \text { Monitor } \end{aligned}$ | $\begin{aligned} & \text { Set } \\ & \text { Frequency } \\ & \text { Monitor } \end{aligned}$ | Running Speed Monitor | Frequency Setting Parameter Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | Hz | Hz | r/min *1 | Hz |
|  | 2 to 10 | Hz | Hz | r/min *1 | Hz |
|  | $\begin{gathered} 102 \text { to } \\ 110 \end{gathered}$ | r/min *1 | r/min *1 | r/min *1 | r/min *1 |
| $\begin{gathered} 1 \text { to } \\ 9998 \end{gathered}$ | 0 | Hz | Hz | Machine speed *1 | Hz |
|  | 2 to 10 | Machine speed *1 | Machine speed *1 | Machine speed *1 | Machine speed *1 |
|  | $\begin{gathered} 102 \text { to } \\ 110 \end{gathered}$ | Hz | Hz | r/min *1 | Hz |

*1 Motor speed r/min conversion formula
.. Frequency $\times 120 /$ number of motor poles (Pr. 144)
Machine speed conversion formula
. Pr. $37 \times$ frequency $/ 60 \mathrm{~Hz}$
For Pr. 144 in the above formula, the value is "Pr. 144-100" when " 102 to 110 " is set in Pr. 144 and the value is " 4 " when Pr. $37=0$ and $\operatorname{Pr} .144=0$.
*2 The increments for Hz are 0.01 Hz , machine speed are $1 \mathrm{~m} / \mathrm{min}$ and $\mathrm{r} / \mathrm{min}$ are $1 \mathrm{r} / \mathrm{min}$

Detection of output frequency (SU, FU, FU2 signal)

Pr. 41 Up-to-frequency sensitivity
Pr. 42 Output frequency detection
Pr. 43 Output frequency detection for reverse rotation
Pr. 50 Second output frequency detection
The inverter output frequency is detected and output at the output signals.

- If the set frequency is considered as $100 \%$, output frequency can be adjusted between $\pm 1 \%$ and $\pm 100 \%$ with Pr. 41 .
- This parameter can be used to ensure that the running frequency has been reached to provide the operation start signal etc. for related equipment.

- When the output frequency reaches or exceeds the setting of $P r$. 42 , the output frequency detection signal (FU) is output.
This function can be used for electromagnetic brake operation, open signal, etc.
- When the detection frequency is set in Pr. 43, frequency detection for reverse rotation use only can also be set. This function is effective for switching the timing of electromagnetic brake operation between forward rotation (rise) and reverse rotation (fall) during vertical lift operation, etc.
- When outputting a frequency detection signal besides the FU signal, set the detection frequency to Pr. 50 . The FU2 signal is output when the output frequency reaches or exceeds the Pr. 50 setting.


Pr. 44, $45 \rightarrow$ Refer to the section about Pr. 7, Pr. 8
Pr. $46 \rightarrow$ Refer to the section about Pr. 0 .
(Pr.) $47 \rightarrow$ Refer to the section about Pr. 3.
Pr. 48, $49 \rightarrow$ Refer to the section about Pr. 22 and other relevant parameters.
Pr. $50 \rightarrow$ Refer to the section about Pr. 41 and other relevant parameters.
Pr. $51 \rightarrow$ Refer to the section about Pr. 9 .

Pr.$52,54,158,170,171,268,563,564,867,891$

Change of DU/PU monitor descriptions Cumulative monitor clear
Pr. 52 DU/PU main display data selection Pr. 54 FM terminal function selection Pr. 158 AM terminal function selection Pr. 171 Operation hour meter clear Pr:563 Energization time carrying-over times Pr. 170 Cumulative power meter clear Pr. 268 Monitor decimal digits selection Pr. 564 Operating time carrying-over times Pr. 867 AM output filter
$\overline{\text { Pr. } 891 \text { Cumulative power monitor digit shifted times }}$
The monitor to be displayed on the main screen of the operation panel (FR-DU07) / parameter unit (FR-PU04) can be selected.

| Types of Monitor | Increments | Pr. 52 Parameter Setting Value |  | Pr. 54 <br> (FM) <br> Pr. 158 <br> (AM) <br> Setting | Full Scale Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { DU } \\ \text { LED } \end{gathered}$ | PU main monitor |  |  |
| Output frequency | 0.01 Hz | 0/100 |  | 1 | Pr. 55 |
| Output current | $\begin{aligned} & 0.01 \mathrm{~A} / \\ & 0.1 \mathrm{~A}^{*} 6 \end{aligned}$ | 0/100 |  | 2 | Pr. 56 |
| Output voltage | 0.1V | 0/100 |  | 3 | 200 V class: 400 V 400 V class : 800 V |
| Alarm display | - | 0/100 |  | - | - |
| Frequency setting | 0.01Hz | 5 | *1 | 5 | Pr. 55 |
| Running speed | 1 (r/min) | 6 | *1 | 6 | Value of Pr. 55 represented in terms of Pr. 37 value |
| Converter output voltage | 0.1V | 8 | *1 | 8 | $\begin{aligned} & 200 \mathrm{~V} \\ & \text { class : } 400 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & \text { class : } 800 \mathrm{~V} \end{aligned}$ |
| Regenerative brake duty *5 | 0.1\% | 9 | *1 | 9 | Brake duty set in Pr. 30 and Pr. 70 |
| Electronic thermal relay function load factor | 0.1\% | 10 | *1 | 10 | Electronic thermal relay function operation level |
| Output current peak value | $\begin{aligned} & \hline 0.01 \mathrm{~A} / \\ & 0.1 \mathrm{~A}^{*} 6 \end{aligned}$ | 11 | *1 | 11 | Pr. 56 |
| Converter output voltage peak value | 0.1V | 12 | *1 | 12 | $\begin{aligned} & 200 \mathrm{~V} \\ & \text { class : } 400 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & \text { class : } 800 \mathrm{~V} \end{aligned}$ |
| Input power | $\begin{gathered} \hline 0.01 \mathrm{~kW} / \\ 0.1 \mathrm{~kW} * 6 \end{gathered}$ | 13 | *1 | 13 | Rated inverter power $\times 2$ |
| Output power | $\begin{aligned} & \hline 0.01 \mathrm{~kW} / \\ & 0.1 \mathrm{~kW} * 6 \end{aligned}$ | 14 | *1 | 14 | Rated inverter power $\times 2$ |
| Input terminal status | - | 55 | *1 | - | - |
| Output terminal status | - |  | *1 | - | - |
| Option input terminal status | - | 56 | $\times$ | - | - |
| Option output terminal status | - | 57 | $\times$ | - | - |
| Load meter | 0.1\% | 17 |  | 17 | Pr. 56 |
| Reference voltage output | - | - | - | 21 | - |
| Cumulative energization time *2 | 1h | 20 |  | - | - |
| Actual operation time *2, 3 | 1h | 23 |  | - | - |
| Motor load factor | 0.1\% | 24 |  | 24 | 200\% |
| Cumulative power | $\begin{array}{c\|} 0.01 \mathrm{kWh} / \\ 0.1 \mathrm{kWh} * 4,{ }^{*} 6 \end{array}$ | 25 |  | - | - |
| Power saving effect | Variable according | 50 |  | 50 | Inverter capacity |
| Cumulative saving power | to parameters | 51 |  | - | - |
| PID set point | 0.1\% | 52 |  | 52 | 100\% |
| PID measured value | 0.1\% | 53 |  | 53 | 100\% |
| PID deviation value | 0.1\% | 54 |  | - | - |

*1 Selected by the parameter unit(FR-PU04)
*2 The cumulative energization time and actual operation time are accumulated from 0 to 65535 hours, then cleared, and accumulated again from 0 .
When the operation panel (FR-DU07) is used, up to 65.53 ( 65530 h ) is displayed as $1 \mathrm{~h}=0.001$ and then accumulated from 0 .
*3 The actual operation time is not added up if the cumulative operation time before power supply-off is less than 1 h .
*4 When using the parameter unit (FR-PU04), "kW" is displayed.
*5 Setting can be made for the 75K or more.
*6 The setting depends on the inverter capacity.(55K or less/75K or more). The cumulative power monitor value digit can be shifted to the right by the number set in Pr. 891.
By setting " 0 " in Pr. 170, the cumulative power monitor can be cleared.
You can check the numbers of cumulative energization time monitor exceeded 65535 h with Pr. 563 and the numbers of actual operation time monitor exceeded 65535h with Pr. 564.
Writing "0" in Pr. 171 clears the actual operation time monitor.

| Pr. 268 Setting | Description |
| :---: | :--- |
| 9999 (initial value) | No function |
| When 1 or 2 decimal places (0.1 increments or 0.01 <br> increments) are monitored, the decimal places are <br> dropped and the monitor displays an integer value (1 <br> increments). <br> The monitor value of 0.99 or less is displayed as 0. |  |
|  | When 2 decimal places (0.01 increments) are <br> monitored, the 0.01 decimal place is dropped and the <br> monitor displays the first decimal place (0.1 <br> increments). <br> When the monitor display digit is originally in 1 <br> increments, it is displayed unchanged in 1 <br> increments. |

When Pr. 52 is set to "100", the set frequency monitor is displayed during a stop and the output frequency monitor is displayed during operation. (LED of Hz flickers during stop and is lit during operation.)

|  | Pr.52 |  |  |
| :---: | :---: | :--- | :--- |
|  | $\mathbf{0}$ |  |  |
|  | During <br> operation/stop | During stop | During <br> running |
| Output <br> frequency | Output frequency | Set frequency | Output frequency |
| Output <br> current | Output current |  |  |
| Output <br> voltage | Output voltage |  |  |
| Alarm <br> display | Alarm display |  |  |

Using Pr. 867 , the output voltage response of the terminal AM can be adjusted within the range 0 to 5 s .

## Pr. <br> 55, 56 <br> Change of the monitor output from terminal FM and AM

Pr. 55 Frequency monitoring reference Pr. 56 Current monitoring reference
Set the full-scale value to output the output frequency monitor value to terminal FM and AM.
Set the full-scale value to output the output current monitor value
to terminal FM and AM in Pr. 56.


## (Pr. 57, 58, 162 to 165, 299, 611

## Restart operation after instantaneous power failure / Flying start

## Pr. 57 Restart coasting time <br> Pr. 58 Restart cushion time

Pr. 162 Automatic restart after instantaneous power failure selection
Pr. 163 First cushion time for restart
Pr. 164 First cushion voltage for restart Pr. 165 Stall prevention operation level for restart
Pr. 299 Rotation direction detection selection at restarting
Pr. 611 Acceleration time at a restart
You can restart the inverter without stopping the motor in the following cases.
when commercial power supply operation is switched to inverter operation
when power comes back on after an instantaneous power failure when motor is coasting at start

|  | Setting Range | Description |
| :---: | :---: | :---: |
| 57 | 0 | $\begin{aligned} & 1.5 \mathrm{~K} \text { or less......... } 0.5 \mathrm{~s} \text {, } \\ & 2.2 \mathrm{~K} \text { to } 7.5 \mathrm{~K} . . . . . . . .1 \mathrm{~s} \text {, } \\ & 11 \mathrm{~K} \text { or more } . . . . . .3 .0 \mathrm{~s} \\ & 75 \mathrm{~K} \text { or more } . . . . . . .5 .0 \mathrm{~s} \end{aligned}$ <br> The above times are coasting time. |
|  | $\begin{gathered} 0.1 \text { to } 5 \mathrm{~s} / \\ 0.1 \text { to } 30 \mathrm{~s} \text { * } \end{gathered}$ | Set the waiting time for inverter-triggered restart after an instantaneous power failure. |
|  | 9999 (initial value) | No restart |
| 58 | 0 to 60s | Set a voltage starting time at restart. |
| 162 | 0 (initial value) | With frequency search |
|  | 1 | Without frequency search (reduced voltage system) |
|  | 10 | Frequency search at every start |
|  | 11 | Reduced voltage system at every start |
| 163 | 0 to 20s | Set a voltage starting time at restart. Consider using these parameters according to the load (inertia moment, torque) magnitude. |
| 164 | 0 to 100\% |  |
| 165 | 0 to 150\% | Consider the rated inverter current as $100 \%$ and set the stall prevention operation level during restart operation. |
| 299 | 0 | Without rotation direction detection |
|  | 1 | With rotation direction detection |
|  | 9999 | When Pr. $78=0$, the rotation direction is detected. <br> When Pr. $78=1,2$, the rotation direction is not detected. |
| 611 | 0 to 3600s | Set the acceleration time to reach the set frequency at restart. |
|  | 9999 | Acceleration time for restart is the normal acceleration time (e.g. Pr. 7). |

The setting range varies according to the inverter capacity. (55K or less/ 75 K or more)

## <Connection diagram>



- When "0 (initial value) or 10 " is set in Pr. 162, the inverter smoothly starts after detecting the motor speed upon power restoration.
- Even when the motor is rotating in the opposite direction, the inverter can be restarted smoothly as the direction of rotation is detected. (You can select whether to make rotation direction detection or not with Pr. 299 Rotation direction detection selection at restarting. )

- When Pr. $162=$ "1" or "11", automatic restart operation is performed in a reduced voltage system, where the voltage is gradually risen with the output frequency unchanged from prior to an instantaneous power failure independently of the coasting speed of the motor.

* The output shut off timing differs according to the load condition.


## Pr. 59 Remote setting function

## Pr. 59 Remote function selection

-Even if the operation panel is located away from the enclosure, you can use contact signals to perform continuous variable-speed operation, without using analog signals.

- By merely setting this parameter, you can use the acceleration, deceleration and setting clear functions of the motorized speed setter (FR-FK).

| Pr. 59 Setting | Description |  |
| :---: | :---: | :---: |
|  | RH, RM, RL signal <br> function | Frequency setting <br> storage function |
| 0 (initial value) | Multi-speed setting | - |
| 1 | Remote setting | Yes |
| 2 | Remote setting | No |
| 3 | Remote setting | (Turning STF/STR off <br> clears remotely-set <br> frequency.) |



* External runnning frequency (other than multi-speed operation) or PU running frequency


## Pr.

 60Energy saving control selection
7 Pr. 60 Energy saving control
Without a fine parameter setting, the inverter automatically performs energy saving operation.
This inverter is optimum for fan and pump applications.

| Pr. 60 Setting | Description |
| :---: | :--- |
| 0 (initial value) | Normal operation mode |
| 4 | Energy saving operation mode <br> In the energy saving operation mode, the inverter <br> automatically controls the output voltage to <br> minimize the inverter output voltage during a <br> constant operation. |
| 9 | Optimum excitation control mode <br> The optimum excitation control mode is a control <br> system which controls excitation current to <br> improve the motor efficiency to maximum and <br> determines output voltage as an energy saving <br> system. |

Pr.65, 67 to 69

## Retry function at alarm occurrence

Pr. 67 Number of retries at alarm occurrence

Pr. 65 Retry selection Pr. 68 Retry waiting time Pr. 69 Retry count display erase
If an alarm occurs, the inverter resets itself automatically to restart. You can also select the alarm description for a retry. When selection of automatic restart after instantaneous power failure is selected (Pr. 57 Restart coasting time, restart operation is performed at retry operation as at an instantaneous power failure.)

- Use Pr. 65 to select the alarm to be activated for retries.
" $\bullet$ " indicates the alarms selected for retry.

| Alarm Indication <br> for Retry | Pr.65 Setting |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| E.OC1 | $\bullet$ | $\bullet$ |  | $\bullet$ | $\bullet$ | $\bullet$ |
| E.OC2 | $\bullet$ | $\bullet$ |  | $\bullet$ | $\bullet$ |  |
| E.OC3 | $\bullet$ | $\bullet$ |  | $\bullet$ | $\bullet$ | $\bullet$ |
| E.OV1 | $\bullet$ |  | $\bullet$ | $\bullet$ | $\bullet$ |  |
| E.OV2 | $\bullet$ |  | $\bullet$ | $\bullet$ | $\bullet$ |  |
| E.OV3 | $\bullet$ |  | $\bullet$ | $\bullet$ | $\bullet$ |  |
| E.THM | $\bullet$ |  |  |  |  |  |
| E.THT | $\bullet$ |  |  |  |  |  |
| E.IPF | $\bullet$ |  |  |  | $\bullet$ |  |
| E.UVT | $\bullet$ |  |  |  | $\bullet$ |  |
| E.BE | $\bullet$ |  |  |  | $\bullet$ |  |
| E. GF | $\bullet$ |  |  |  | $\bullet$ |  |
| E.OHT | $\bullet$ |  |  |  |  |  |
| E.OLT | $\bullet$ |  |  |  | $\bullet$ |  |
| E.OPT | $\bullet$ |  |  |  | $\bullet$ |  |
| E.OP1 | $\bullet$ |  |  |  | $\bullet$ |  |
| E. PE | $\bullet$ |  |  |  | $\bullet$ |  |
| E.PTC | $\bullet$ |  |  |  |  |  |
| E.CDO | $\bullet$ |  |  |  | $\bullet$ |  |
| E.SER | $\bullet$ |  |  |  | $\bullet$ |  |
| E.ILF | $\bullet$ |  |  |  | $\bullet$ |  |

- Set the number of retries at alarm occurrence in Pr. 67.

| Pr. 67 Setting | Description |
| :---: | :--- |
| 0 (initial value) | No retry function |
| 1 to 10 | Set the number of retries at alarm occurrence. <br> An alarm output is not provided during retry <br> operation. |
| 101 to 110 | Set the number of retries at alarm occurrence. <br> (The setting value of minus 100 is the number <br> of retries.) <br> An alarm output is provided during retry <br> operation. |

- Use Pr. 68 to set the waiting time from when an inverter alarm occurs until a retry is made in the range 0 to 10 s
- Reading the Pr. 69 value provides the cumulative number of successful restart times made by retry.
(Pr. 66
$\rightarrow$ Refer to the section about Pr. 22 and other relevant parameters.
(Pr. 67 to 69
$\rightarrow$ Refer to the section about Pr. 65 and other relevant parameters.
$\rightarrow$ Refer to the section about Pr. 30 and other relevant parameters.



## Use the constant torque motor (applied motor)

## Pr. 71 Applied motor

Setting of the used motor selects the thermal characteristic appropriate for the motor.
Setting is necessary when using a constant-torque motor. Thermal characteristic of the electronic thermal relay function suitable for the motor is set.

| Pr. 71 <br> Setting | Thermal Characteristic of the <br> Electronic Thermal Relay <br> Function | Motor <br> (O: Motor used) |  |
| :---: | :--- | :---: | :---: |
|  |  | Standard <br> (SF-JR, <br> etc.) | Constant <br> torque <br> (SF-HRCA, <br> etc.) |
| 0 <br> (initial <br> value) | Thermal characteristics of a standard <br> motor | 0 | 0 |
| 1 | Thermal characteristics of the Mitsubishi <br> constant-torque motor | 0 | 0 |
| 2 | Thermal characteristics of a standard <br> motor <br> Adjustable 5 points V/F | 0 |  |
| 20 | Mitsubishi standard motor SF-JR4P <br> (1.5kW or less) | 0 |  |

- For the 5.5 K and 7.5 K , the Pr. 0 Torque boost and Pr. 12 DC injection brake operation voltage settings are automatically changed according to the Pr. 71 setting as follows.

| $\operatorname{Pr.} 7 \mathbf{1}$ | Standard Motor Setting <br> $\mathbf{0 , 2 , 2 0}$ | Constant Torque Motor <br> Setting <br> $\mathbf{1}$ |
| :---: | :---: | :---: |
| $\operatorname{Pr.} 0$ | $3 \%$ | $2 \%$ |
| $\operatorname{Pr} .12$ | $4 \%$ | $2 \%$ |


$72,240,260$
Carrier frequency and SoftPWM selection
Pr. 72 PWM frequency selection
Pr. 240 Soft-PWM operation selection Pr: 260 PWM frequency automatic switchover
You can change the motor sound.

| Pr. <br> Number | Setting <br> Range | Description |
| :---: | :---: | :--- |
| 72 | 0 to $15 /$ <br> 0 to $6,25^{*}$ | You can change the PWM carrier frequency. The <br> setting displayed is in $[\mathrm{kHz}]$ <br> Note that 0 indicates $0.7 \mathrm{kHz}, 15$ indicates <br> 14.5 kHz and 25 indicates 2.5kHz. |
|  | 0 | Soft-PWM is invalid |
|  | 1 | When "0 to 5" ("0 to 4" for the 75K or more) is set <br> in Pr. 72, Soft-PWM is valid |
| 0 | PWM carrier frequency is constant independently <br> of load. When the carrier frequency is set to 3kHz <br> or more (Pr. 72 23), perform continuous operation <br> at less than 85\% of the rated inverter current. |  |
|  | 1 | Decreases PWM carrier frequency automatically <br> when load increases. |

* The setting range varies according to the inverter capacity. (55K or less/75K or more).
(Note)When Pr. 260="1 (initial value)", if continuous operation is performed at $85 \%$ or more of the rated inverter current with $\operatorname{Pr} .72$ value set to " 3 " $(3 \mathrm{kHz})$ or more, the carrier frequency is automatically reduced. This may cause the motor noise to increase.


## Analog input selection

Pr. 73 Analog input selection
Pr. 242 Terminal 1 added compensation amount (terminal 2)
Pr. 243 Terminal 1 added compensation amount (terminal 4)
Pr. 252 Override bias
Pr. 253 Override gain
Pr. 267 Terminal 4 input selection

- You can select the function that switches between forward rotation and reverse rotation according to the analog input polarity, the override function and the input signal specifications.
- For the terminals 1, 2, 4 used for analog input, voltage input ( 0 to $5 \mathrm{~V}, 0$ to 10 V ) or current input ( 4 to 20 mA ) can be selected.
- The additional compensation and fixed ratio of analog compensation (override) using terminal 2 as an auxiliary input can be made to multi-speed operation or the speed setting signal (main speed) of the terminal 2 or terminal 4. ( $\square$ indicates the main speed setting)

| Pr. 73 <br> Setting | Terminal 2 <br> Input | Terminal 1 <br> Input | Terminal 4 Input | Compensation <br> Input Terminal <br> and <br> compensation <br> Method | Polarity Reversible |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Pr. 73 <br> Setting | Terminal 2 2 <br> Input | Terminal 1 <br> Input | Terminal 4 Input | Compensation <br> Input Terminal <br> and <br> Compensation <br> Method | Polarity Reversible |
| :---: | :---: | :---: | :---: | :---: | :---: |$|$

(1) Added compensation (Pr.242, Pr.243)

A compensation signal can be added to the main speed setting for synchronous operation, etc.


The terminal 1 (frequency setting auxiliary input) signal is added to the main speed setting signal of the terminal 2 or 4.
(2) Override function (Pr.252, Pr.253)

When an override is selected, the terminal 1 or 4 is used for the main speed setting and the terminal 2 for the override signal. (When the main speed of the terminal 1 or terminal 4 is not input, compensation by the terminal 2 is invalid.)


When an override is selected, the terminal 1 or 4 is used for the main speed setting and the terminal 2 for the override signal ( $50 \%$ to $150 \%$ at 0 to 5 V or 0 to 10 V ). (When the main speed of the terminal 1 or 4 is not input, compensation by the terminal 2 is invalid.)
When Pr. 22 Stall prevention operation level $=$ "9999", the value of the terminal 1 is as set to the stall prevention operation level.

## Pr. $74 \begin{aligned} & \text { Noise } \\ & \text { input }\end{aligned}$

Pr. 74 Input filter time constant
The time constant of the primary delay filter relative to external frequency command (analog input (terminal 1, 2, 4) signal) can be set.

- Valid for eliminating noise of the frequency setting circuit.
- Increase the filter time constant if steady operation cannot be performed due to noise.
A larger setting results in slower response. (The time constant can be set between approximately 10 ms to 1 s with the setting of 0 to 8 .)


## Reset selection, disconnected PU detection

Pr. 75 Reset selection/disconnected PU detection/PU stop selection
You can select the reset input acceptance, disconnected PU (FR-DU07) connector detection function and PU stop function.

| $\text { Pr. } 75$ <br> Setting | Reset Selection | Disconnected PU Detection | PU Stop Selection |
| :---: | :---: | :---: | :---: |
| 0 | Reset input normally enabled. | If the PU is disconnected, operation will be continued as-is. | Pressing <br> decelerates the motor to a stop only in the PU operation mode. |
| 1 | Reset input enabled only when the protective function is activated. |  |  |
| 2 | Reset input normally enabled. | When the PU is disconnected, the inverter output is shut off. |  |
| 3 | Reset input enabled only when the protective function is activated. |  |  |
| 14 <br> (initial <br> value) | Reset input normally enabled. | If the PU is disconnected, operation will be continued as-is. | Pressing decelerates the motor to a stop in any of the PU, external and communication operation modes. |
| 15 | Reset input enabled only when the protective function is activated. |  |  |
| 16 | Reset input normally enabled. | When the PU is disconnected, the inverter output is shut off. |  |
| 17 | Reset input enabled only when the protective function is activated. |  |  |

- Reset selection

You can select the operation timing of reset function (RES signal, reset command through communication) input

- Disconnected PU detection

This function detects that the PU (FR-DU07/FR-PU04) has been disconnected from the inverter for longer than 1s and causes the inverter to provide an alarm output (E.PUE) and come to an alarm stop.

- PU stop selection

In any of the PU operation, external operation and network operation modes, the motor can be stopped by pressing $\frac{\text { STOP }}{\text { RISET }}$ of the PU.

## Pr. 76 Output function of alarm code

Pr. 76 Alarm code output selection
At alarm occurrence, its description can be output as a 4-bit digital signal from the open collector output terminals.
The alarm code can be read by a programmable controller, etc., and its corrective action can be shown on a display, etc.

| Pr. 76 Setting | Description |
| :---: | :--- |
| 0 (initial value) | Without alarm code output |
| 1 | With alarm code output (Refer to the following table) |
| 2 | Alarm code output at alarm occurrence only (Refer to <br> the following table) |

- The following table indicates alarm codes to be output. (0: output transistor off, 1: output transistor on)

| Operation Panel Indication (FR-DU07) | Output of Output Terminals |  |  |  | Alarm Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | SU | IPF | OL | FU |  |
| Normal * | 0 | 0 | 0 | 0 | 0 |
| E.OC1 | 0 | 0 | 0 | 1 | 1 |
| E.OC2 | 0 | 0 | 1 | 0 | 2 |
| E.OC3 | 0 | 0 | 1 | 1 | 3 |
| E.OV1 to E.OV3 | 0 | 1 | 0 | 0 | 4 |
| E.THM | 0 | 1 | 0 | 1 | 5 |
| E.THT | 0 | 1 | 1 | 0 | 6 |
| E.IPF | 0 | 1 | 1 | 1 | 7 |
| E.UVT | 1 | 0 | 0 | 0 | 8 |
| E.FIN | 1 | 0 | 0 | 1 | 9 |
| E.BE | - 1 | 0 | 1 | 0 | A |
| E. GF | 1 | 0 | 1 | 1 | B |
| E.OHT | 1 | 1 | 0 | 0 | C |
| E.OLT | 1 | 1 | 0 | 1 | D |
| E.OPT | 1 | 1 | 1 | 0 | E |
| E.OP1 | 1 | 1 | 1 | 0 | E |
| Other than the above | 1 | 1 | 1 | 1 | F |

* When Pr. $76=$ " 2 ", the output terminals output the signals assigned to $\operatorname{Pr}$. 190 to Pr. 196.


## Pr. 77 Prevention of parameter rewrite

Pr. 77 Parameter write selection
You can select whether write to various parameters can be performed or not. Use this function to prevent parameter values from being rewritten by misoperation.

| Pr. 77 Setting | Description |
| :---: | :--- |
| 0 (initial value) | Write is enabled only during a stop |
| 1 | Parameter write is not enabled. |
| 2 | Parameter write is enabled in any operation <br> mode regardless of operation status. |

Pr.
Prevention of reverse rotation of 78 the motor
Pr. 78 Reverse rotation prevention selection
This function can prevent reverse rotation fault resulting from the incorrect input of the start signal.

| Pr. 78 Setting | Description |
| :---: | :--- |
| 0 (initial value) | Both forward and reverse rotations allowed |
| 1 | Reverse rotation disabled |
| 2 | Forward rotation disallowed |

## Pr. Pr. 340 Operation mode selection

7 Pr. 79 Operation mode selection Pr. 340 Communication startup mode selection

- Used to select the operation mode of the inverter.

You can freely change between operation by external signal (external operation), operation by PU (FR-DU07) (PU operation), operation by combination of PU operation and external operation (external/PU combined operation) and network operation (when RS-485 terminals or a communication option is used).

| $\begin{gathered} \text { Pr. } 79 \\ \text { Setting } \end{gathered}$ | Description | LED Indication $\begin{aligned} & 巨: \text { Off } \\ & 巨: O n \end{aligned}$ |
| :---: | :---: | :---: |
| $\begin{gathered} 0 \\ \text { (initial } \\ \text { value) } \end{gathered}$ | External/PU switchover mode ( Press $\frac{\mathrm{PU}}{\mathrm{EXT}}$ to switch between the PU and external operation mode.) External operation mode at power-on | External operation mode $\qquad$ <br> PU operation mode |
| 1 | Fixed to PU operation mode | PU EXT NeT |
| 2 | Fixed to external operation mode Operation can be performed by switching between the external and Net operation mode. | External operation mode $\qquad$ EXT <br> NET operation mode $\square$ |
| 3 | $\|c\|$ External/PU combined operation mode 1 <br> Running frequency Start signal <br> PU (FR-DU07 I  <br> FR-PU04) setting  <br> or external signal External signal <br> input (multi-speed input (terminal STF, <br> setting, across STR) <br> terminals 4-5 (valid  <br> when AU signal  <br> turns on))  | PU EXT |
| 4 | External/PU combined operation mode 2  <br> Running frequency Start signal <br> External signal Input from the PU <br> input (terminal 2, 4, (FR-DU07 / FR- <br> 1, Jog, multi-speed  <br> setting, etc)  |  |
| 6 | Switch-over mode <br> Switch among PU operation, external operation, and NET operation while keeping the same operation status. | PU operation mode $\square$ <br> External operation mode $\square$ <br> EXT <br> NET operation mode $\square$ |
| 7 | External operation mode (PU operation interlock) <br> X12 signal ON <br> Operation mode can be switched to the PU operation mode. <br> (output stop during external operation) <br> X12 signal OFF <br> Operation mode can not be switched to the PU operation mode. | PU operation mode $\square$ <br> PU EXI <br> External operation mode $\qquad$ |

- Specify operation mode at power on (Pr.340)

When power is switched on or when power comes back on after instantaneous power failure, the inverter can be started up in the network operation mode.
After the inverter has started up in the network operation mode, parameter write and operation can be performed from a program.
Set this mode for communication operation using the inverter RS485 terminals or communication option.
You can set the operation mode at power on (reset) according to the Pr. 79 and Pr. 340 settings.

| Pr. 340 <br> Setting | Pr. 79 Setting | Operation mode at Power On, Power Restoration, Reset | Operation Mode Switchover |
| :---: | :---: | :---: | :---: |
| 0 (initial value) value) | As set in Pr. 79. |  |  |
| 1,2*1 | 0 | NET operation mode | Can be switched to external, PU or NET operation mode *2 |
|  | 1 | PU operation mode | Fixed to PU operation mode |
|  | 2 | NET operation mode | Can be switched to external or NET operation mode Switching to PU operation mode disabled |
|  | 3, 4 | External/PU combined operation mode | Operation mode switching disabled |
|  | 6 | NET operation mode | Can be switched to external, PU or NET operation mode with operation continued |
|  | 7 | X12 (MRS) signal ON .. NET operation mode | Can be switched to external, PU or NET operation mode *2 |
|  |  | X12(MRS)signal OFF <br> External operation mode | Fixed to external operation mode (Forcibly switched to external operation mode.) |
| $10,12$ | 0 | NET operation mode | Can be switched to PU or NET operation mode *3 |
|  | 1 | PU operation mode | Fixed to PU operation mode |
|  | 2 | NEToperation mode | Fixed to NET operation mode |
|  | 3, 4 | External/PU combined operation mode | Operation mode switching is disallowed |
|  | 6 | NET operation mode | Can be switched to PU or NET operation mode with operation continued *3 |
|  | 7 | External operation mode | Fixed to external operation mode (Forcibly switched to external operation mode.) |

*1 The Pr. 340 setting "2" or "12" is mainly used for communication operation using the inverter RS-485 terminals.
When a value other than "9999" (selection of automatic restart after instantaneous power failure) is set in Pr. 57 Restart coasting time, the inverter will resume the same operation state which was in before after power has been restored from an instantaneous power failure.
*2 The operation mode cannot be switched directly between the PU operation mode and network operation mode.
*3 Operation mode can be changed between the PU operation mode and network operation mode with $\frac{\mathrm{PU}}{\mathrm{EXT}}$ key of the operation panel (FRDU07) and X65 signal.

## Simple magnetic flux vector control

Pr. 80 Motor capacity (simple magnetic flux vector control)
Pr. 90 Motor constant (R1)
Providing optimum excitation to the motor can also produce high torque in a low-speed region. (simple magnetic flux vector control) Set the used motor capacity (equal to or one rank higher than the inveter capacity) in Pr. 80.

The number of motor poles should be any of 2,4 and 6 poles.
Single-motor operation (one motor for one inverter)
Wiring length from inverter to motor should be within 30 m .
When simple magnetic flux vector control is not used, set "9999" (initial value) in $\operatorname{Pr} .80$.
For Pr. 90 Motor constant (R1), normally setting is not necessary. When you need more torque under simple magnetic flux vector control for other manufacturer's motor, set the motor primary resistance value (R1) for $\lambda$ connection in Pr. 90

## Pr. 100 to 109

## Adjustable 5 points V/F

Pr. 100 V/F1 (first frequency) Pr. 102 V/F2 (second frequency)
Pr. 104 V/F3 (third frequency) Pr. 106 V/F4 (fourth frequency) Pr. 108 V/F5 (fifth frequency)

Pr. 101 V/F1 (first frequency voltage) Pr. 103 V/F2 (second frequency voltage) Pr. 105 V/F3 (third frequency voltage) Pr. 107 V/F4 (fourth frequency voltage) Pr. 109 V/F5 (fifth frequency voltage)

A dedicated V/F pattern can be made by freely setting the V/F characteristic between a startup and the base frequency and base voltage under V/F control (frequency voltage/frequency). Possible to set the torque pattern that is optimum for the machine's characteristic


Adjustable 5 points V/F will not function under simple magnetic flux vector control.
When Pr. 19 Base frequency voltage $=$ " 8888 " or "9999", Pr. 71 cannot be set to "2". To set Pr. 71 to "2", set the rated voltage value to Pr. 19
When the frequency values of the points are the same, a write inhibit error ( $\varepsilon_{r} ;$ ) occurs.
Set the points (frequencies, voltages) of Pr. 100 to Pr. 109 within the ranges of Pr. 3 Base frequency and Pr. 19 Base frequency voltage. When " 2 " is set in Pr. 71, Pr. 47 Second V/F (base frequency) will not function.
When "2" is set in Pr. 71, thermal characteristic of the electronic thermal relay function changes to thermal characteristics of a standard motor.

## Pr.

 117 to 124,331 to 337,341 to 343,549Communication initial setting
Pr. 117 PU communication station Pr. 118 PU communication speed
Pr. 119 PU communication stop bit length. Pr. 120 PU communication parity check Pr. 121 Number of PU communication retries Pr: 122 PU communication check time interval Pr. 123 PU communication waiting time setting
Pr. 124 PU communication CR/LF presence/absence selection
Pr. 331 RS-485 communication station Pr. 332 RS-485 communication speed Pr. 333 RS-485 communication stop bit length
Pr. 334 RS-485 communication parity check selection
Pr. 335 RS-485 communication number of retries Pr. 336 RS-485 communication check time interval Pr. 337 RS-485 communication waiting time setting
Pr. 341 RS-485 communication CR/LF selection Pr. 342 Communication EEPROM write selection
Pr. 343 Communication error count Pr. 549 Protocol selection

## (1) Initial settings and specifications of RS-485

communication (Pr. 117 to Pr.124, Pr. 331 to Pr.337, Pr.341)
Used to perform required settings for RS-485 communication between the inverter and personal computer.

- There are two different communications: communication using the PU connector of the inverter and communication using the RS-485 terminals.
- You can perform parameter setting, monitor, etc. using the Mitsubishi inverter protocol or Modbus-RTU protocol.
- To make communication between the personal computer and inverter, initialization of the communication specifications must be made to the inverter.
Data communication cannot be made if the initial settings are not made or there is any setting error.

| Pr. <br> Number | Setting Range | Description |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 117 \\ & 331 \end{aligned}$ | $\begin{gathered} 0 \text { to } 31 \\ (0 \text { to } 247) * 1 \end{gathered}$ | Specify the inverter station number. Set the inverter station numbers when two or more inverters are connected to one personal computer. |  |
| $\begin{aligned} & 118 \\ & 332 \end{aligned}$ | $\begin{gathered} 48,96,192,384 \\ (3,6,12,24) * 2 \end{gathered}$ | Set the communication speed. <br> The setting value $\times 100$ equals the communication speed. <br> For example, the communication speed is 19200bps when the setting value is "192". |  |
| $\begin{aligned} & 119 \\ & 333 \end{aligned}$ |  | Stop bit length | Data length |
|  | 0 | 1bit | 8bit |
|  | 1 (initial value) | 2bit |  |
|  | 10 | 1 bit | 7bit |
|  | 11 | 2bit |  |
| $\begin{aligned} & 120 \\ & 334 \end{aligned}$ | 0 | Without parity check |  |
|  | 1 | With odd parity check |  |
|  | 2 (initial value) | With even parity check |  |
| $\begin{aligned} & 121 \\ & 335 \end{aligned}$ | 0 to 10 | Set the permissible number of retries at occurrence of a data receive error. If the number of consecutive errors exceeds the permissible value, the inverter will come to an alarm stop. |  |
|  | 9999 | If a communication error occurs, the inverter will not come to an alarm stop. |  |
| $\begin{aligned} & 122 \\ & 336 \end{aligned}$ | 0 | No PU connector communication Communication with RS-485 terminal can be made, but the inverter will come to an alarm stop in the NET operation mode. |  |
|  | $0.1 \text { to } 999.8 \mathrm{~s}$ | Set the interval of communication check time. <br> If a no-communication state persists for longer than the permissible time, the inverter will come to an alarm stop. |  |
|  | 9999 (initial value) | No communication check |  |
| $\begin{array}{r} 123 \\ 337 \end{array}$ | 0 to 150 ms | Set the waiting time between data transmission to the inverter and response. |  |
|  | 9999 (initial value) | Set with communication data. |  |
| $\begin{aligned} & 124 \\ & 341 \end{aligned}$ | 0 | Without CR/LF |  |
|  | 1 (initial value) | With CR |  |
|  | 2 | With CR/LF |  |

*1 When making communication through Modbus-RTU protocol with the RS485 terminals, the setting range of Pr. 331 within parenthesis is applied.
*2 The values in parenthesis are added to the setting range of Pr. 332.
(2) Communication EEPROM write selection (Pr.342)

Parameters written via the inverter's PU connector or RS-485 terminals or from the communication option can be written to the RAM. When performing parameter change frequently, set "1" in Pr. 342.
(3) Modbus-RTU communication specifications (Pr.343, Pr.549)

* The Modbus-RTU protocol is valid for only communication from the RS-485 terminals.

| Pr. Number | Setting <br> Range | Description |
| :---: | :---: | :--- |
| 343 | - | Display the number of communication <br> errors during Modbus-RTU communication. <br> Reading only |
|  | 0 <br> (initial value) | Mitsubishi inverter (computer link) protocol |
|  | 1 | Modbus-RTU protocol |

## Pr. 1 <br> 125 Pr. <br> 126 <br>  <br> 241, C2(902) to C7(905)

Analog input frequency change and voltage, current input and frequency adjustment (calibration)
Pr. 125 Terminal 2 frequency setting gain frequency
P Pr. 126 Terminal 4 frequency setting gain frequency
Pr. 241 Analog input display unit switchover
C2(Pr.902) Terminal 2 frequency setting bias frequency
C3(Pr.902) Terminal 2 frequency setting bias C4(Pr.903) Terminal 2 frequency setting gain
$\overline{\text { C5(Pr.904) Terminal } 4 \text { frequency setting }}$ bias frequency
C6(Pr.904) Terminal 4 frequency setting bias C7(Pr.905) Terminal 4 frequency setting gain

- You can set the magnitude (slope) of the output frequency as desired in relation to the frequency setting signal ( 0 to 5VDC, 0 to 10 V or 4 to 20 mA )
(1) Change the frequency at maximum analog input.
(Pr.125, Pr.126)
Set a value in Pr. 125 (Pr. 126) when changing only the frequency setting (gain) of the maximum analog input power (current). (C2 (Pr. 902) to C7 (Pr. 905) setting need not be changed)


(2) Analog input bias/gain calibration (C2(Pr.902) to C7(Pr.905))

The "bias" and "gain" functions are used to adjust the relationship between the input signal entered from outside the inverter to set the output frequency, e.g. 0 to $5 \mathrm{~V}, 0$ to 10 V or 4 to 20 mADC , and the output frequency.
Set the bias frequency of terminal 2 input using C 2 (Pr. 902). (Factory-set to the frequency at 0 V )
Using Pr. 125 , set the output frequency relative to the frequency command voltage (current) set in Pr. 73 Analog input selection.
Set the bias frequency of the terminal 4 input using $\mathrm{C} 5(\mathrm{Pr}$. 904).
(Factory-set to the frequency at 4 mA )
Using Pr. 126, set the output frequency relative to 20 mA of the frequency command current ( 4 to 20 mA ).
(3) Analog input display unit changing (Pr. 241)

You can change the analog input display unit (\%/V/mA) for analog input bias/gain calibration.

## Pr. <br> 127 to 134,575 to 577 <br> PID control

Pr. 127 PID control automatic switchover freqeuncy

| Pr. 128 PID action selection <br> Pr. 130 PID integral time | $\frac{\text { Pr. } 129 \text { PID proportional band }}{\text { Pr. } 131 \text { PID upper limit }}$ |
| :--- | :--- |
| Pr. 132 PID lower limit | Pr. 133 PID action set point <br> Pr. 134 PID differential time |
| Pr. 576 Output interruption detection level | Pr. 575 Output interruption detection time |

The inverter can be used to exercise process control, e.g. flow rate, air volume or pressure.
The terminal 2 input signal or parameter setting is used as a set point and the terminal 4 input signal used as a feedback value to constitute a feedback system for PID control.
Pr. $128=" 10,11$ " (Deviation value signal input)


Pr. $128=$ "20, 21" (Measured value input)


## Switch between the inverter operation and commercial power-supply operation to use

Pr. 135 Commercial power-supply switchover sequence output terminal selection Pr. 136 MC switchover interlock time Pr. 137 Waiting time at a start Pr. 138 Commercial power-supply operation switchover selection at an alarm Pr: 139 Automatic switchover frequency between inverter and commercial power-supply operation Pr. 159 Automatic switchover ON range between commercial power-supply and inverter operation
The complicated sequence circuit for commercial power supplyinverter switchover is built in the inverter. Hence, merely inputting the start, stop or automatic switchover selection signal facilitates the interlock operation of the switchover magnetic contactor.

| Pr135 Setting | Description |
| :---: | :--- |
| 0 (initial value) | Without commercial power-supply switchover sequence |
| 1 | With commercial power-supply switchover sequence |

Sink logic type, Pr. $185=$ "7", Pr. 192 = "17", Pr. $193=$ "18", Pr. $194=$ "19"


Commercial power-supply switchover sequence connection diagram
*1 Take caution for the capacity of the sequence output terminal.
*2 When connecting a DC power supply, insert a protective diode
*3 The used terminal changes depending on the setting of Pr. 180 to Pr. 189 (input terminal function selection).
Pr. 140 to $143 \rightarrow$ Refer to the section about Pr. 29 and other relevant parameters.
(Pr. 144
$\rightarrow$ Refer to the section about Pr. 37 and other relevant parameters.

## Parameter unit display language selection

Pr. 145 PU display language selection
You can switch the display language of the parameter unit (FRPU04) to another.

| Pr.145 Setting | Description |
| :---: | :---: |
| 0 (initial value) | Japanese |
| 1 | English |
| 2 | German |
| 3 | French |
| 4 | Spanish |
| 5 | Italian |
| 6 | Swedish |
| 7 | Finnish |

(Pr.) 148, $149 \rightarrow$ Refer to the section about Pr. 22 and other relevant parameters.

## Pr. <br> 150 to $153,166,167$

## Detection of output current (Y12 signal) detection of zero current (Y13 signal)

Pr. 150 Output current detection level Pr. 151 Output current detection signal delay time Pr. 152 Zero current detection level Pr. 153 Zero current detection time Pr. 166 Output current detection signal retention time
Pr:167 Output current detection operation selection
The output current during inverter running can be detected and output to the output terminal.
(1) Output current detection
(Y12 signal, Pr. 150, Pr. 151, Pr. 166, Pr. 167)
The output current detection function can be used for excessive torque detection, etc.
If the output current remains higher than the Pr. 150 setting during inverter operation for longer than the time set in Pr . 151, the output current detection signal ( Y 12 ) is output from the inverter's open collector or relay output terminal.

(2) Zero current detection (Y13 signal, Pr. 152, Pr. 153)

If the output current remains lower than the Pr. 152 setting during inverter operation for longer than the time set in Pr . 153 , the zero current detection (Y13) signal is output from the inverter's open collector or relay output terminal.

(Pr.) $154 \rightarrow \begin{aligned} & \text { Refer to the section about Pr. } 22 \text { and other } \\ & \text { relevant parameters. }\end{aligned}$

Selection of action conditions of the second function signal (RT)
Pr. 155 RT signal reflection time selection
You can select the second function using the external terminal (RT signal).
You can also set the RT signal operation condition (reflection time).

| Pr.155 Setting | Description |
| :---: | :--- |
| 0 (initial value) | This function is immediately made valid with on <br> of the RT signal. |
| 10 | This function is valid only during the RT signal <br> is on and constant speed operation. (invalid <br> during acceleration/deceleration) |

Functions that can be set as second functions

| Function | First Function <br> Parameter Number | Second Function <br> Parameter Number |
| :--- | :---: | :---: |
| Torque boost | Pr.0 | Pr.46 |
| Base frequency | Pr.3 | Pr.47 |
| Acceleration time | Pr. 7 | Pr.44 |
| Deceleration time | Pr.8 | Pr.44, Pr.45 |
| Electronic thermal O/L <br> relay | Pr. 9 | Pr. 51 |
| Stall prevention | Pr. 22 | Pr.48, Pr. 49 |

Pr. $156,157 \rightarrow$ Refer to the section about Pr. 22 and other relevant parameters.
Pr. $158 \rightarrow$ Refer to the section about Pr. 54 and other
 relevant parameters.
Pr. $159 \rightarrow$ Refer to the section about Pr. 135 and other

## Pr. 160 <br> Pr. 172 to 174

Display of applied parameters and user group function
7 Pr. 160 User group read selection
Pr. 172 User group registered display/batch clear
Pr. 173 User group registration
Pr. 174 User group clear

- Parameter which can be read from the operation panel and parameter unit can be restricted.
In the initial setting, only the simple mode parameters are displayed.

| Pr. 160 <br> Setting | Description |
| :---: | :--- |
| 9999 <br> (initial <br> value) | Only the simple mode parameters can be displayed. |
| 0 | Simple mode+extended parameters can be displayed. |
| 1 | Only parameters registered to the user group can be displayed. |

(1) Display of simple mode parameters and extended parameters (Pr.160)

When Pr. $160=$ "9999" (initial value), only the simple mode parameters can be displayed on the operation panel (FRDU07) and parameter unit (FR-PU04).
When " 0 " is set in Pr. 160, simple mode parameters and extended parameters can be displayed
(2) User group function (Pr.160, Pr. 172 to Pr.174)

The user group function is designed to display only the parameters necessary for setting.
From among all parameters, a maximum of 16 parameters can be registered to a user group. When Pr. 160 is set in " 1 ", only the parameters registered to the user group can be accessed. (The parameters not registered to the user group cannot be read.)
To register a parameter to the user group, set its parameter number to Pr. 173.
To delete a parameter from the user group, set its parameter number to Pr. 174. To batch-delete the registered parameters, set Pr. 172 in "9999".

## Operation selection of the operation panel

Pr. 161 Frequency setting/key lock operation selection
You can use the setting dial of the operation panel (FR-DU07) like a potentiometer to perform operation.
The key operation of the operation panel can be disabled.

| Pr. 161 Setting | Description |  |
| :---: | :--- | :--- |
| 0 (initial value) | Setting dial frequency setting mode | Key lock mode <br> invalid |
| 1 | Setting dial potentiometer mode |  |
| 10 | Setting dial frequency setting mode | Key lock mode <br> valid |
| 11 | Setting dial potentiometer mode |  |

(Pr. 162 to 165
$\rightarrow$ Refer to the section about Pr. 57 and other relevant parameters.
(Pr. 166, 167
(Pr.) 168, 169
(Pr. 170, 171
$\rightarrow$ Refer to the section about Pr. 52 and other relevant parameters.
(Pr. 172 to 174
$\rightarrow$ Refer to the section about Pr. 160 and other relevant parameters.

## Pr. <br> 178 to 189 input terminal <br> Pr. 178 STF terminal function selection Pr. 180 RL terminal function selection Pr. 182 RH terminal function selection Pr. 184 AU terminal function selection Pr. 186 CS terminal function selection Pr. 188 STOP terminal function selection

Pr. 189 RES terminal function selection
Use these parameters to select/change the input terminal functions

| $\begin{gathered} \text { Pr. } 178 \text { to } \\ \text { Pr. } 189 \\ \text { Setting } \\ \hline \end{gathered}$ | Signal <br> Name | Function |  |
| :---: | :---: | :---: | :---: |
| 0 | RL | $\begin{aligned} & \hline P r .59=0 \\ & \text { (initial value) } \end{aligned}$ | Low speed operation command |
|  |  | Pr. 59 =1, 2 *1 | Remote setting (setting clear) |
| 1 | RM | $\begin{aligned} & \text { Pr. } 59=0 \\ & \text { (initial value) } \end{aligned}$ | Middle speed operation command |
|  |  | Pr.59 =1, 2 *1 | Remote setting (deceleration) |
| 2 | RH | $\begin{aligned} & \text { Pr. } 59=0 \\ & \text { (initial value) } \end{aligned}$ | High speed operation command |
|  |  | Pr. 59 =1, 2 * 1 | Remote setting (acceleration) |
| 3 | RT | Second function selection |  |
| 4 | AU | Terminal 4 input selection |  |
| 5 | JOG | Jog operation selection |  |
| 6 | CS | Selection of automatic restart after instantaneous power failure, flying start |  |
| 7 | OH | External thermal relay input *2 |  |
| 8 | REX | 15 speed selection (combination with three speeds RL, RM, RH) |  |
| 10 | X10 | Inverter operation enable signal (FR-HC, FR-CV connection) |  |
| 11 | X11 | FR-HC connection, instantaneous power failure detection |  |
| 12 | X12 | PU operation external interlock |  |
| 14 | X14 | PID control valid terminal |  |
| 16 | X16 | PU-external operation switchover |  |
| 24 | MRS | Output stop |  |
| 25 | STOP | Start self-holding selection |  |
| 60 | STF | Forward rotation command(assigned to STF terminal (Pr. 178) only) |  |
| 61 | STR | Reverse rotation command(assigned to STR terminal (Pr. 179) only) |  |
| 62 | RES | Inverter reset |  |
| 63 | PTC | PTC thermistor input(assigned to AU terminal (Pr. 184) only) |  |
| 64 | X64 | PID forward/reverse action switchover |  |
| 65 | X65 | NET/PU operation switchover |  |
| 66 | X66 | External/NET operation switchover |  |
| 67 | X67 | Command source switchover |  |
| 9999 | - | No function |  |

*1 When Pr. 59 Remote function selection $=$ "1" or "2", the functions of the RL, RM and RH signals are changed as given in the table.

Pr. 179 STR terminal function selection Pr. 181 RM terminal function selection Pr. 183 RT terminal function selection Pr. 185 JOG terminal function selection Pr. 187 MRS terminal function selection Pr. 187 MRS terminal function selecton
*2 The OH signal turns on when the relay contact "opens". Terminal assignment of output terminal
Pr. 190 RUN terminal function selection Pr. 191 SU terminal function selection Pr. 192 IPF terminal function selection Pr. 194 FU terminal function selection Pr. 193 OL terminal function selection Pr. 195 ABC1 terminal function selection Pr. 196 ABC2 terminal function selection
You can change the functions of the open collector output terminal and relay output terminal.

| $\begin{aligned} & \text { Pr. } 190 \text { to Pr. } 196 \\ & \text { Setting } \\ & \hline \end{aligned}$ |  | Signal Name | Function |
| :---: | :---: | :---: | :---: |
| Positive logic | Negative logic |  |  |
| 0 | 100 | RUN | Inverter running |
| 1 | 101 | SU | Up to frequency |
| 2 | 102 | IPF | Instantaneous power failure/ undervoltage |
| 3 | 103 | OL | Overload alarm |
| 4 | 104 | FU | Output frequency detection |
| 5 | 105 | FU2 | Second output frequency detection |
| 5 | 105 | FU2 | Second output frequency detection |
| 7 | 107 | RBP | Regenerative brake prealarm * |
| 10 | 110 | PU | PU operation mode |
| 11 | 111 | RY | Inverter operation ready |
| 12 | 112 | Y12 | Output current detection |
| 13 | 113 | Y13 | Zero current detection |
| 14 | 114 | FDN | PID lower limit |
| 15 | 115 | FUP | PID upper limit |
| 16 | 116 | RL | PID forward/reverse rotation output |
| 17 | - | MC1 | Commercial power-supply switchover MC1 |
| 1 18 | - | MC2 | Commercial power-supply switchover MC2 |
| 19 | - | MC3 | Commercial power-supply switchover MC3 |
| 25 | 125 | FAN | Fan fault output |
| 26 | 126 | FIN | Heatsink overheat pre-alarm |
| 45 | 145 | RUN3 | During inverter running and start command is on |
| 46 | 146 | Y46 | During deceleration at occurrence of power failure (retained until release) |
| 47 | 147 | PID | During PID control activated |
| 64 | 164 | Y64 | During retry |
| 70 | 170 | SLEEP | During PID output suspension |
| 90 | 190 | Y90 | Life alarm |
| 91 | 191 | Y91 | Alarm output 3 (power-off signal) |
| 92 | 192 | Y92 | Energy saving average value updated timing |
| 93 | 193 | Y93 | Current average monitor signal |
| 94 | 194 | ALM2 | Alarm output 2 |
| 95 | 195 | Y95 | Maintenance timer signal |
| 96 | 196 | REM | Remote output |
| 98 | 198 | LF | Minor fault output |
| 99 | 199 | ALM | Alarm output |
| 9999 |  | - | No function |

* Setting can be made for the 75 K or more.
(Pr. $\mathbf{2 3 2}$ to $\mathbf{2 3 9} \rightarrow$ Refer to the section about Pr. 4 to Pr. 6
Pr. $240 \rightarrow$ Refer to the section about Pr. 72 and other relevant parameters.
Pr. $241 \rightarrow$ Refer to the section about Pr. 125, Pr. 126
Pr. 242, $243 \rightarrow$ Refer to the section about Pr. 73 and other relevant parameters.


## Pr. <br> 244 Increase cooling fan life

Pr. 244 Cooling fan operation selection
You can control the operation of the cooling fan (200V class 2.2 K or more, 400 V class 3.7 K or more) built in the inverter.

| Pr. 244 Setting | Description |
| :---: | :--- |
| 0 | The cooling fan operates at power on. <br> Cooling fan on/off control invalid (The cooling <br> fan is always on at power on) |
| 1 (initial value) | Cooling fan on/off control valid <br> The fan is normally on during inverter <br> operation. The fan switches on/off according to <br> the temperature during a stop of the inverter <br> whose status is monitored. |

## Pr. 245 to 247 Slip compensation

## Pr. 245 Rated slip

Pr. 246 Slip compensation time constant Pr. 247 Constant-output region slip compensation selection
The inverter output current may be used to assume motor slip to keep the motor speed constant.


## Selection of motor stopping method and start signal

## Pr. 250 Stop selection

Used to select the stopping method (deceleration to a stop or coasting) when the start signal turns off.
Used to stop the motor with a mechanical brake, etc. together with switching off of the start signal.
You can also select the operations of the start signals (STF/STR).

| Pr. 250 <br> Setting | Description |  |
| :---: | :---: | :---: |
|  | Start signal (STF/STR) | Stop operation |
| 0 to 100s | STF signal: Foward rotation start STR signal: Reverse rotation start | The motor is coasted to a stop when the preset time elapses after the start signal is turned off. The motor is coasted to a stop (Pr. 250-1000)s after the start signal is turned off. |
| 1000s to 1100s | STF signal: Start signal STR signal: Forward/ reverse rotation signal |  |
| 9999 | STF signal: Foward rotation start STR signal: Reverse rotation start | When the start signal is turned off, the motor decelerates to stop. |
| 8888 | STF signal: Start signal STR signal: Forward/ reverse rotation signal |  |

When Pr. 250 is set to " 9999 " (initial value) or " 8888 ".


When Pr. 250 is set to values other than " 9999 " (initial value) or " 8888 ".


Input/output phase failure protection selection
Pr. 251 Output phase failure protection selection Pr: 872 Input phase failure protection selection
You can disable the output phase failure protection function that stops the inverter output if one of the inverter output side (load side) three phases ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) opens.
The input phase failure protection selection of the inverter input side (R/L1, S/L2, T/L3) can be made valid.

| Pr. Number | Setting Range | Description |
| :---: | :---: | :--- |
| 251 | 0 | Without output phase failure protection |
|  | 1 (initial value) | With output phase failure protection |
| 872 | 0 (initial value) | Without input phase failure protection |
|  | 1 | With input phase failure protection |

Refer to the section about Pr. 73 and other relevant parameters.

Pr.

## Display of the life of the inverter parts

$\frac{\text { Pr. } 255 \text { Life alarm status display } \quad \quad \text { Pr. } 256 \text { Inrush current limit circuit life display }}{\text { Pr.257 Con }}$
 Pr. 259 Main circuit capacitor life measuring
Degrees of deterioration of main circuit capacitor, control circuit capacitor or inrush current limit circuit and cooling fan can be diagnosed by monitor.
When any part has approached the end of its life, an alarm can be output by self diagnosis to prevent a fault.
(Use the life check of this function as a guideline since the life except the main circuit capacitor is calculated theoretically.)

| Pr. <br> Number | Setting <br> Range | Description |
| :---: | :---: | :--- |
| 255 | $(0$ to 15) | Display whether the control circuit capacitor, <br> main circuit capacitor, cooling fan, and each <br> parts of the inrush current limit circuit has <br> reached the life alarm output level or not. <br> Reading only |
| 256 | $(0$ to 100\%) | Display the deterioration degree of the inrush <br> current limit circuit. Reading only |
| 257 | $(0$ to 100\%) | Display the deterioration degree of the control <br> circuit capacitor. Reading only |
| 258 | $(0$ to $100 \%)$ | Display the deterioration degree of the main <br> circuit tapacitor. Reading only <br> The value measured by Pr. 259 is displayed. |
| 259 | Setting "1" and turning off the power starts the <br> measurement of the main circuit capacitor life. <br> When the Pr. 259 value is "3" after powering on <br> again, the measuring is completed. Read the <br> deterioration degree in Pr. 258. |  |

Pr. $260 \rightarrow$ Refer to the section about Pr. 72.

## Pr. 261 to 266 <br> Operation at instantaneous <br> power failure

Pr. 261 Power failure stop selection
Pr. 262 Subtracted frequency at deceleration start
Pr. 263 Subtraction starting frequency Pr. 264 Power-failure deceleration time 1 Pr. 265 Power-failure deceleration time 2
Pr. 266 Power failure deceleration time switchover frequency
When a power failure or undervoltage occurs, the inverter can be decelerated to a stop or can be decelerated and reaccelerated to the set frequency.

| $\begin{gathered} \text { Pr. } \\ \text { Number } \end{gathered}$ | Setting Range | Description |
| :---: | :---: | :---: |
| 261 | 0 (initial value) | Coasting to stop When undervoltage or power failure occurs, the inverter output is shut off. |
|  | 1 | When undervoltage or a power failure occurs, the inverter can be decelerated to a stop. |
|  | 2 | When undervoltage or a power failure occurs, the inverter can be decelerated to a stop. <br> If power is restored during a power failure, the inverter accelerates again. |
| 262 | 0 to 20 Hz | Normally operation can be performed with the initial value unchanged. But adjust the frequency according to the magnitude of the load specifications (moment of inertia, torque). |
| 263 | 0 to 120 Hz | When output frequency $\geq$ Pr. 263 Decelerate from the speed obtained from output frequency minus Pr. 262. When output frequency < Pr. 263 Decelerate from output frequency |
|  | 9999 | Decelerate from the speed obtained from output frequency minus Pr. 262. |
| 264 | 0 to 3600/360s * | Set a deceleration slope down to the frequency set in Pr. 266. |
| 265 | 0 to 3600/360s * | Set a deceleration slope below the frequency set in Pr. 266. |
|  | 9999 | Same slope as in Pr. 264 |
| 266 | 0 to 400 Hz | Set the frequency at which the deceleration slope is switched from the Pr. 264 setting to the Pr. 265 setting. |

* When the setting of Pr. 21 Acceleration/deceleration time increments is " 0 " (initial value), the setting range is " 0 to 3600 s " and the setting increments are " 0.1 s ", and when the setting is " 1 ", the setting range is " 0 to 360 s" and the setting increments are " 0.01 s "

(1) Power failure stop mode ( $\operatorname{Pr.} 261=" 1 ")$

If power is restored during power failure deceleration, deceleration to a stop is continued and the inverter remains stopped.To restart, turn off the start signal once, then turn it on again.


Turn off STF once to make acceleration again
(2) Instantaneous power failure-time operation continuation function (Pr. $261=$ " 2 ")

- When power is restored during deceleration after an instantaneous power failure, acceleration is made again up to the set frequency.
When this function is used in combination with the automatic restart after instantaneous power failure operation, deceleration can be made at a power failure and acceleration can be made again after power restoration.
When power is restored after a stop by deceleration at an instantaneous power failure, automatic restart operation is performed if automatic restart after instantaneous power failure has been selected (Pr. $57 \neq$ "9999")

(Pr. 267
$\rightarrow$ Refer to the section about Pr. 73 and other relevant parameters.

Pr. $268 \rightarrow$ Refer to the section about Pr. 52 and other relevant parameters.

Pr. 269 Parameter for manufacturer setting. Do not set.
Pr. $299 \rightarrow$ Refer to the section about Pr. 57 and other relevant parameters.
Pr. 331 to $337 \rightarrow$ Refer to the section about Pr. 117 and other relevant parameters.

$338,339,550,551$
Operation command source and speed command source during communication operation
Pr. 338 Communication operation command source Pr. 339 Communication speed command source Pr. 550 NET mode operation command source selection Pr. 551 PU mode operation command source selection
When the RS-485 terminals or communication option is used, the external operation command and speed command can be made valid. Also, the control command source in the PU operation mode can be selected.

|  | Setting Range | Description |
| :---: | :---: | :---: |
| 338 | $\begin{gathered} 0 \\ \text { (initial } \\ \text { value) } \end{gathered}$ | Operation command source communication |
|  | 1 | Operation command source external |
| 339 | $\stackrel{0}{\text { (initial }}$ value) | Speed command source communication |
|  | 1 | Speed command source external (Frequency setting from communication is invalid, terminal 2 and 1 setting from external is valid) |
|  | 2 | Speed command source external (Frequency setting from communication is valid, terminal 2 and 1 setting from external is invalid) |
| 550 * | 0 | Communication option valid |
|  | 1 | Inverter RS-485 terminal valid |
|  | 9999 (initial value) | Automatic communication option recognition Normally, the RS-485 terminals are valid. When the communication option is fitted, the communication option is valid. |
| 551 * | 1 | Select the RS-485 terminals as the PU operation mode control source. |
|  | $\begin{gathered} 2 \\ \text { (initial } \\ \text { value) } \end{gathered}$ | Select the PU connector as the PU operation mode control source. |

* Pr. 550 and Pr. 551 are always write-enabled.

Pr. $340 \rightarrow$ Refer to the section about Pr. 79.
Pr. 341 to 343
$\rightarrow$ Refer to the section about Pr. 117 and other relevant parameters.

## Pr. 495 to 497 Remote output function 495 to 497 (REM signal)

Pr. 495 Remote output selection
Pr. 496 Remote output data 1
Pr. 497 Remote output data 2
You can utilize the on/off of the inverter's output signals instead of the remote output terminal of the programmable logic controller.

## Pr. <br> 503 to 504 <br> To determine the maintenance time of parts.

Pr. 503 Maintenance timer
Pr. 504 Maintenance timer alarm output set time
When the cumulative energization time of the inverter reaches the parameter set time, the maintenance timer output signal (Y95) is output. Hil $^{-}$(MT) is displayed on the operation panel (FR-DU07)
This can be used as a guideline for the maintenance time of peripheral devices.


- The cumulative energization time of the inverter is stored into the EEPROM every hour and indicated in Pr. 503 Maintenance timer in 100h increments. Pr. 503 is clamped at 9998 ( 999800 h ).

Pr. $549 \rightarrow$ Refer to the section about Pr. 117 to Pr. 124.
Pr. $\mathbf{5 5 0}$ to $\mathbf{5 5 1} \rightarrow$ Refer to the section about Pr. 338, Pr. 339.

Pr. 555 to 557

## Current average value monitor signal

Pr. 555 Current average time Pr. 556 Data output mask time Pr. 557 Current average value monitor signal output reference current
The average value of the output current during constant speed operation and the maintenance timer value are output as a pulse to the current average value monitor signal (Y93).
The pulse width output to the I/O module of the PLC or the like can be used as a guideline due to abrasion of machines and elongation of belt and for aged deterioration of devices to know the maintenance time.
The current average value monitor signal (Y93) is output as pulse for 20s as 1 cycle and repeatedly output during constant speed operation.


The averaged current value is output as low
0.5 to $9 \mathrm{~s}(10$ to $180 \%)$ during
0.5 to $9 \mathrm{~s}(10$ to $180 \%$ ) during start bit output.
Signal output time $=\frac{\text { output current average value }(\mathrm{A})}{\operatorname{Pr} 557(\mathrm{~A})} \times 5 \mathrm{~s}$

Pr. $571 \rightarrow$ Refer to the section about Pr. 13 and other relevant parameters.

Pr. 575 to $577 \rightarrow$ Refer to the section about Pr. 127 and other relevant parameters.

Pr. $611 \rightarrow$ Refer to the section about Pr. 57 and other relevant parameters.

Pr. $872 \rightarrow$ Refer to the section about Pr. 251 and other relevant parameters.

## Pr. 882 to 886 function

Pr. 882 Regeneration avoidance operation selection
Pr. 883 Regeneration avoidance operation level
Pr. 884 Regeneration avoidance at deceleration detection sensitivity
Pr. 885 Regeneration avoidance compensation frequency limit value
Pr. 886 Regeneration avoidance voltage gain
This function detects a regeneration status and increases the frequency to avoid the regeneration status.

- Possible to avoid regeneration by automatically increasing the frequency and continue operation if the fan happens to rotate faster than the set speed due to the effect of another fan in the same duct.

| Pr. <br> Number | Setting <br> Range | Description |
| :---: | :---: | :--- |
| 882 | 0 <br> (initial <br> value) | Regeneration avoidance function invalid |
| 883 | 1 | Regeneration avoidance function valid |
|  |  |  |
|  |  |  |$\quad$| Set the bus voltage level at which regeneration |
| :--- |
| avoidance operates. When the bus voltage level |
| is set to low, overvoltage error will be less apt to |
| occur. However, the actual deceleration time |
| increases. The set value must be higher than the |
| power supply valtage $\times \sqrt{2}$. |



## 888, 889 Free parameter

Pr. 888 Free parameter 1
Parameters you can use for your own purposes.
You can input any number within the setting range 0 to 9999.
For example, the number can be used:
As a unit number when multiple units are used.

- As a pattern number for each operation application when multiple units are used.
As the year and month of introduction or inspection.

[^5]
## Pr. 892 to 899 Energy saving monitor

Pr. 892 Load factor
Pr. 893 Energy saving monitor reference (motor capacity)
Pr. 894 Control selection during commercial power-supply operation
Pr. 895 Power saving rate reference value
Pr. 896 Power unit cost
Pr: 897 Power saving monitor average time
$\overline{\text { Pr. } 898 \text { Power saving cumulative monitor clear }}$
Pr. 899 Operation time rate (estimated value)
From the power consumption estimated value during commercial power supply operation, the energy saving effect by use of the inverter can be monitored/output.

The following provides the items that can be monitored by the power saving monitor (Pr. 52, Pr. 54, Pr. $158=$ " 50 ").
(Only power saving and power saving average value can be output to Pr. 54
(terminal FM) and Pr. 158 (terminal AM))

| Energy Saving Monitor Item | Description and Formula | Increments |
| :---: | :---: | :---: |
| Power saving | Difference between the estimated value of power necessary for commercial power supply operation and the input power calculated by the inverter <br> Power during commercial power supply operation - input power monitor | $0.01 \mathrm{~kW} /$ $0.1 \mathrm{~kW}{ }^{*}$ |
| Power saving rate | Ratio of power saving on the assumption that power during commercial power supply operation is $100 \%$ <br> Power saving <br> Power during commercial power supply operation $\times$ <br> Ratio of power saving on the assumption that Pr. 893 is $100 \%$ $\frac{\text { Power saving }}{\text { Pr: } 893} \times 100$ | 0.1\% |
| Power saving average value | Average value of power saving amount per hour during predetermined time (Pr. 897) $\frac{\Sigma(\text { Power saving } \times \Delta t)}{\text { Pr. } 897}$ | $0.01 \mathrm{kWh} /$ 0.1 kWh * |
| Power <br> saving <br> rate <br> reference <br> value | Ratio of power saving average value on the assumption that the value during commercial power supply operation is $100 \%$ $\frac{\Sigma(\text { Power saving } \times \Delta t)}{\text { Pr. } 897} \times 100$ <br> Ratio of power saving average value on the assumption that Pr. 893 is $100 \%$ $\frac{\text { Power saving average value }}{\text { Pr. } 893} \times 100$ | 0.1\% |
| Power saving charge average value | Power saving average value represented in terms of charge <br> Power saving average value $\times$ Pr. 896 | 0.01/0.1* |

The following gives the items which can be monitored by the cumulative saving power monitor（Pr． $52=" 51 "$ ）．
（The cumulative power monitor data digit can be shifted to the right by the number set in Pr． 891 Cumulative power monitor digit shifted times．）

| Energy <br> Saving <br> Monitor <br> Item | Description and Formula | Increments |
| :--- | :--- | :---: |
| Power <br> saving <br> amount | Power saving is added up per hour． <br> $\Sigma$（Power saving $\times \Delta \mathrm{t})$ | $0.01 \mathrm{kWh} /$ <br> $0.1 \mathrm{kWh} *$ |
| Power <br> saving <br> amount <br> charge | Power saving amount represented in terms of <br> charge <br> Power saving amount $\times$ Pr． 896 | $0.01 / 0.1^{*}$ |
| Annual <br> power <br> saving <br> amount | Estimated value of annual power saving amount <br> Power saving amount | Operation time during <br> power saving totalization |

＊The increments vary according to the inverter capacity．（55K or less／75K or more）

Pr．C0（900），C1（901） Adjustment of terminal FM
and AM（calibration） C0（Pr．900）FM terminal calibration C1（Pr．901）AM terminal calibration
The operation panel and parameter unit can be used to calibrate the full scales of the terminals FM and AM．

## （1）FM terminal calibration（ $C 0$（Pr．900））

The terminal FM is preset to output pulses．By setting the Calibraton parameter C0（Pr．900），the meter connected to the inverter can be calibrated by parameter setting without use of a calibration resistor．
Using the pulse train output of the terminal FM，a digital display can be provided by a digital counter．The monitor value is 1440 pulses／s output at the full－scale value of Pr． 54 FM terminal function selection．

＊1 Not needed when the operation panel（FR－DU07）or parameter unit（FR－ PU04）is used for calibration．
Used when calibration must be made near the frequency meter for such a reason as a remote frequency meter．
However，the frequency meter needle may not deflect to full－scale if the calibration resistor is connected．In this case，use this resistor and operation panel or parameter unit together．
（2）AM terminal calibration（C1（Pr．901））
－The AM terminal is factory－set to output 10VDC in the full－ scale state of each monitor item．By setting the calibration parameter C1（Pr．901），the ratio（gain）of the output voltage can be adjusted to the meter scale．Note that the maximum output voltage is 10VDC．
Pr．C2（902）to $\mathbf{C 7}$（905）$\rightarrow$ Refer to the section about Pr．125，Pr． 126
Pr． 989 Parameter for manufacturer setting．Do not set．

## Pr． 990 Buzzer control of the operation panel

Pr． 990 PU buzzer control
You can make the buzzer＂beep＂when you press key of the operation panel（FR－DU07）and parameter unit（FR－PU04）．

| Pr．990 Setting | Description |
| :---: | :--- |
| 0 | Without buzzer |
| 1（initial value） | With buzzer |

Pr．

## 991 <br> PU contrast adjustment

Pr． 991 PU contrast adjustment
Contrast adjustment of the LCD of the parameter unit（FR－ PU04）can be performed．
Decreasing the setting value makes contrast light．

| Pr． 991 Setting | Description |
| :---: | :--- |
| 0 to 63 | $0:$ Light |
|  | $\downarrow$ |
|  | 63 ：Dark |

## Pr．989，CL，ALLC，Er．CL，PCPY

## Parameter clear，parameter copy

Pr． 989 Parameter copy alarm release

## Pr．CL Parameter clear <br> Er．CL Alarm history clear <br> ALLC All parameter clear

（Calibration parameters are not cleared．）＊
－Set＂ 1 ＂in ALLC All parameter clear to initialize all parameters．＊
－Set＂1＂in Er．CL Alarm history clear to clear alarm history．＊
－Parameter settings can be copied to multiple inverters by using PCPY．
When parameters are copied to the 75 K or more inverter from the 55 K or less inverter or vice versa，an alarm appears on the operation panel．
For the parameters whose setting range differ，set Pr． 989 as below after reset．

|  | 55K or less | 75K or more |
| :---: | :---: | :---: |
| Pr． 989 setting | 10 | 100 |
| PCPY <br> Setting | Description |  |
| 0 | Cancel |  |
| 1 | Copy the source parameters in the operation panel． |  |
| 2 | Write the parameters copied to the operation panel to the <br> destination inverter． |  |
| 3 | Verify parameters in the inverter and operation panel． |  |

＊Parameters are not cleared when＂1＂is set in Pr． 77 Parameter write selection．

When an alarm occurs in the inverter，the protective function is activated bringing the inverter to an alarm stop and the PU display automatically changes to any of the following error（alarm）indications．

| Function Name |  | Description | Indication |
| :---: | :---: | :---: | :---: |
|  | Operation panel lock | Appears when operation is tried during operation panel lock． | Hitic ${ }^{\text {d }}$ |
|  | Parameter write error | Appears when an error occurs at parameter writing． | $\begin{array}{cr} \hline \text { Er to } \\ E_{r}-4 \end{array}$ |
|  | Copy operation error | Appears when an error occurs at parameter copying． | $\begin{aligned} & \hline r E \text { to } \\ & r E G \end{aligned}$ |
|  | Error | Appears when the RES signal is on or the PU and inverter can not make normal communication． | Err． |
|  | Stall Prevention （overcurrent） | Appears during overcurrent stall prevention． | 81 |
|  | Stall prevention （overvoltage） | Appears during overvoltage stall prevention Appears while the regeneration avoidance function is activated． | OL |
|  | Regenerative brake prealarm | Appears if the regenerative brake duty reaches or exceeds $85 \%$ of the Pr． 70 ＂special regenerative brake duty＂value．If the regenerative brake duty reaches $100 \%$ ，a regenerative overvoltage（E．OV＿）occurs． <br> （displayed only for the 75 K or more） | $r 6$ |
|  | Electronic thermal relay function prealarm | Appears when the electronic thermal O／L relay has reached $85 \%$ of the specified value． | 「H |
|  | PU Stop | Appears when ${ }^{\text {STOP }}$（Sit） on the operation panel was pressed during external operation． | 95 |
|  | Maintenance signal output | Appears when the cumulative energization time has exceeded the maintenance output timer set value． | 717 |
|  | Parameter copy | Appears when parameters are copied between models with capacities of 55 K or less and 75 K or more． | 69 |
|  | Fan fault | Appears when the cooling fan remains stopped when operation is required or when the speed has decreased． | $F_{n}$ |
|  | Overcurrent shut－off during acceleration | Appears when an overcurrent occurred during acceleration． | ESE： |
|  | Overcurrent shut－off during constant speed | Appears when an overcurrent occurred during constant speed operation． | E日G |
|  | Overcurrent shut－off during deceleration or stop | Appears when an overcurrent occurred during deceleration and at a stop． | E063 |
|  | Regenerative overvoltage shutoff during acceleration | Appears when an overvoltage occurred during acceleration． | ESu |
|  | Regenerative overvoltage shut－off during constant speed | Appears when an overvoltage occurred during constant speed operation． | Eかいご |
|  | Regenerative overvoltage shut－ off during deceleration or stop | Appears when an overvoltage occurred during deceleration and at a stop． | Eかい3 |
|  | Inverter overload shut－off （electronic thermal relay function）＊1 | Appears when the electronic thermal relay function for inverter element protection was activated． | E．f Hir |
|  | Motor overload shut－off （electronic thermal relay function）＊1 | Appears when the electronic thermal relay function for motor protection was activated． | Ernin |
|  | Fin overheat | Appears when the heatsink overheated． | EF！ |
|  | Instantaneous power failure protection | Appears when an instantaneous power failure occurred at an input power supply． | E． $9 \%$ |
|  | Undervoltage protection | Appears when the main circuit DC voltage became low． | E．ilu＇ |
|  | Input phase failure | Appears if one of the three phases on the inverter input side opened． | E． $1 \%$ |
|  | Stall prevention | Appears when the output frequency drops to 0.5 Hz as a result of deceleration due to the excess motor load． | E为 |
|  | Output side earth（ground） fault overcurrent protection | Appears when an earth（ground）fault occurred on the inverter＇s output side． | E．EIF |
|  | Output phase failure protection | Appears if one of the three phases on the inverter output side opened． | $E .15$ |
|  | External thermal relay operation＊ 6 | Appears when the external thermal relay connected to the terminal OH operated． | E．OHi |
|  | PTC thermistor operation | Appears when the motor overheat status is detected for 10s or more by the external PTC thermistor input connected to the terminal AU． | EOFE |
|  | Option alarm | Appears when an alarm occurred in the option card or an AC power supply is connected to the R／L1，S／L2，T／L3 when the high power factor converter connection is set． | EnOT |
|  | Option slot alarm | Appears when a communication error occurred in the communication option． | ERP！ |
|  | Option alarm | Appears when a functional error occurred in the plug－in option． | $E .1$ |
|  | Parameter storage devide alarm | Appears when operation of the element where parameters are stored became abnormal．（control circuit board） | E．PE |


|  | Function Name | Description | Indication |
| :---: | :---: | :---: | :---: |
|  | PU disconnection | Appears when a communication error between the PU and inverter occurred, the communication interval exceeded the permissible time during the RS-485 communication with the PU connecter, or communication errors exceeded the number of retries during the RS-485 communication. | EPuE |
|  | Retry count excess | Appears when the operation was not restarted within the set number of retries. | E.EF |
|  | Parameter storage devide alarm | Appears when operation of the element where parameters stored became abnormal. (main circuit board) | EPEC |
|  | CPU error | Appears during the CPU and peripheral circuit errors. | $\begin{array}{lr} \hline E & \sigma / \\ E & \square / \\ E & H \end{array}$ |
|  | Operation panel power supply short circuit RS-485 terminals power supply short circuit | Appears when the RS-485 terminal power supply or operation panel power supply was shorted. | ELIE |
|  | 24VDC power output short circuit | Appears when terminals PC-SD were shorted. | E.P34 |
|  | Output current detection value exceeded | Appears when output current exceeded the output current detection level set by the parameter. | E.Coio |
|  | Inrush resistor overheat | Appears when the resistor of the inrush current limit circuit overheated. | E.10H |
|  | Communication error (inverter) | Appears when a communication error occurred during the RS-485 communication with the RS-485 terminals. | E.SEr |
|  | Analog input error | Appears when 30 mA or more is input or a voltage ( 7.5 V or more) is input with the terminal $2 / 4$ set to current input. | $E .91 E$ |
|  | Internal circuit error | Appears when an internal circuit error occurred. | E. 13 |
|  | Brake transistor alarm detection | This function stops the inverter output if an alarm occurs in the brake circuit, e.g. damaged brake transistors. In this case, the inverter must be powered off immediately. (Internal circuit error for the model 55K or less) | $E \cdot \mathrm{bE}$ |

[^6]
## Options

By fitting the following options to the inverter, the inverter is provided with more functions.
One plug-in option can be fitted.

| Name | Type | Applications, Specifications, etc. |
| :--- | :--- | :--- | :--- | :--- |


|  | Name | Type | Applications, Specifications, etc. | Applicable Inverter |
| :---: | :---: | :---: | :---: | :---: |
|  | Manual controller | FR-AX | For independent operation. With frequency meter, frequency setting potentiometer and start switch. | Shared among all models |
|  | DC tach. follower | FR-AL | For synchronous operation (1.5VA) by external signal (0 to $5 \mathrm{~V}, 0$ to 10 V DC ) * |  |
|  | Three speed selector | FR-AT | For three speed switching, among high, middle and low speed operation (1.5VA) * |  |
|  | Motorized speed setter | FR-FK | For remote operation. Allows operation to be controlled from several places (5VA) * |  |
|  | Ratio setter | FR-FH | For ratio operation. Allows ratios to be set to five inverters. (3VA) * |  |
|  | PG follower | FR-FP | *or tracking operation by a pilot generator (PG) signal (3VA) |  |
|  | Master controller | FR-FG | Master controller (5VA) for parallel operation of multiple (maximum 35) inverters. * |  |
|  | Soft starter | FR-FC | For soft start and stop. Enables acceleration/deceleration in parallel operation (3VA) * |  |
|  | Deviation detector | FR-FD | For continuous speed control operation. Used in combination with a deviation sensor or synchro (5VA) * |  |
|  | Preamplifier | FR-FA | Used as an A/V converter or arithmetic amplifier (3VA) * |  |
|  | Pilot generator | QVAH-10 | For tracking operation. $70 \mathrm{~V} / 35 \mathrm{VAC} 500 \mathrm{~Hz}$ (at $2500 \mathrm{r} / \mathrm{min}$ ) |  |
|  | Deviation sensor | YVGC-500W-NS | For continuous speed control operation (mechanical deviation detection). Output $90 \mathrm{VAC} / 90^{\circ}$ |  |
|  | Frequency setting potentiometer | WA2W 1k $\Omega$ | For frequency setting. Wirewound $2 \mathrm{~W} 1 \mathrm{k} \Omega \mathrm{B}$ characteristic |  |
|  | Frequency meter | YM206NRI 1mA | Dedicated frequency meter (graduated to 120 Hz ). Movingcoil type DC ammeter |  |
|  | Calibration resistor | RV24YN 10k | For frequency meter calibration. Carbon film type B characteristic |  |
|  | Inverter setup software (FR Configrator) | $\begin{aligned} & \text { FR-SW1-SETUP- } \\ & \text { WE } \end{aligned}$ | Supports an inverter startup to maintenance. | Shared among all models |

[^7]
## Stand-alone option






External connection diagram



## Peripheral devices list

| Voltage |  | Applicable Inverter Type | Moulded Case Circuit Breaker (MCCB) *2 or Earth Leakage Circuit Breaker (ELB) |  |  | Input Side Magnetic Contactor*3 <br> Reactor connection |  | Recommended Cable Size $\left(\mathrm{mm}^{2}\right)^{*} 4$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Reactor connection |  | Commercial-power supply operation available |  |  | $\mathrm{R}, \mathrm{~S}, \mathrm{~T}$ | $\mathbf{u}, \mathrm{v}, \mathrm{w}$ |
|  |  |  | without | with |  | without | with |  |  |
| 200 V class | 0.75 | FR-F720-0.75K | 30AF 10A | 30AF 10A | 30AF 10A | S-N10 | S-N10 | 2 | 2 |
|  | 1.5 | FR-F720-1.5K | 30AF 15A | 30AF 15A | 30AF 15A | S-N10 | S-N10 | 2 | 2 |
|  | 2.2 | FR-F720-2.2K | 30AF 20A | 30AF 15A | 30AF 20A | S-N10 | S-N10 | 2 | 2 |
|  | 3.7 | FR-F720-3.7K | 30AF 30A | 30AF 30A | 30AF 30A | S-N20, N21 | S-N10 | 3.5 | 3.5 |
|  | 5.5 | FR-F720-5.5K | 50AF 50A | 50AF 40A | 50AF 50A | S-N25 | S-N20, N21 | 5.5 | 5.5 |
|  | 7.5 | FR-F720-7.5K | 100AF 60A | 50AF 50A | 100AF 60A | S-N25 | S-N25 | 14 | 8 |
|  | 11 | FR-F720-11K | 100AF 75A | 100AF 75A | 100AF 75A | S-N35 | S-N35 | 14 | 14 |
|  | 15 | FR-F720-15K | 225AF 125A | 100AF 100A | 225AF 125A | S-N50 | S-N50 | 22 | 22 |
|  | 18.5 | FR-F720-18.5K | 225AF 150A | 225AF 125A | 225AF 150A | S-N65 | S-N50 | 38 | 38 |
|  | 22 | FR-F720-22K | 225AF 175A | 225AF 150A | 225AF 175A | S-N80 | S-N65 | 38 | 38 |
|  | 30 | FR-F720-30K | 225AF 225A | 225AF 175A | 225AF 225A | S-N95 | S-N80 | 60 | 60 |
|  | 37 | FR-F720-37K | 400AF 250A | 225AF 225A | 400AF 250A | S-N150 | S-N125 | 80 | 80 |
|  | 45 | FR-F720-45K | 400AF 300A | 400AF 300A | 400AF 350A | S-N180 | S-N150 | 100 | 100 |
|  | 55 | FR-F720-55K | 400AF 400A | 400AF 350A | 600AF 500A | S-N220 | S-N180 | 100 | 100 |
|  | 75 | FR-F720-75K | - | 400AF 400A | 400AF 400A | - | S-N300 | 125 | 125 |
|  | 90 | FR-F720-90K | - | 400AF 400A | 600AF 500A | - | S-N300 | 150 | 150 |
|  | 110 | FR-F720-110K | - | 600AF 500A | 600AF 600A | - | S-N400 | $2 \times 100$ | $2 \times 100$ |
| 400 V class | 0.75 | FR-F740-0.75K | 30AF 5A | 30AF 5A | 30AF 5A | S-N10 | S-N10 | 2 | 2 |
|  | 1.5 | FR-F740-1.5K | 30AF 10A | 30AF 10A | 30AF 10A | S-N10 | S-N10 | 2 | 2 |
|  | 2.2 | FR-F740-2.2K | 30AF 10A | 30AF 10A | 30AF 15A | S-N10 | S-N10 | 2 | 2 |
|  | 3.7 | FR-F740-3.7K | 30AF 20A | 30AF 15A | 30AF 20A | S-N10 | S-N10 | 2 | 2 |
|  | 5.5 | FR-F740-5.5K | 30AF 30A | 30AF 20A | 30AF 30A | S-N20 | S-N11, N12 | 2 | 2 |
|  | 7.5 | FR-F740-7.5K | 30AF 30A | 30AF 30A | 30AF 30A | S-N20 | S-N20 | 3.5 | 3.5 |
|  | 11 | FR-F740-11K | 50AF 50A | 50AF 40A | 50AF 50A | S-N20 | S-N20 | 5.5 | 5.5 |
|  | 15 | FR-F740-15K | 100AF 60A | 50AF 50A | 100AF 60A | S-N25 | S-N20 | 8 | 8 |
|  | 18.5 | FR-F740-18.5K | 100AF 75A | 100AF 60A | 100AF 75A | S-N25 | S-N25 | 14 | 8 |
|  | 22 | FR-F740-22K | 100AF 100A | 100AF 75A | 100AF 100A | S-N35 | S-N25 | 14 | 14 |
|  | 30 | FR-F740-30K | 225AF 125A | 225AF 100A | 225AF 125A | S-N50 | S-N50 | 22 | 22 |
|  | 37 | FR-F740-37K | 225AF 150A | 225AF 125A | 225AF 150A | S-N65 | S-N50 | 22 | 22 |
|  | 45 | FR-F740-45K | 225AF 175A | 225AF 150A | 225AF 175A | S-N80 | S-N65 | 38 | 38 |
|  | 55 | FR-F740-55K | 225AF 200A | 225AF 175A | 225AF 200A | S-N80 | S-N80 | 60 | 60 |
|  | 75 | FR-F740-75K | - | 225AF 225A | 225AF 225A | - | S-N95 | 60 | 60 |
|  | 90 | FR-F740-90K | - | 225AF 225A | 400AF 300A | - | S-N150 | 60 | 60 |
|  | 110 | FR-F740-110K | - | 225AF 225A | 400AF 350A | - | S-N180 | 80 | 80 |
|  | 132 | FR-F740-132K | - | 400AF 400A | 400AF 400A | - | S-N220 | 100 | 125 |
|  | 160 | FR-F740-160K | - | 400AF 400A | 600AF 500A | - | S-N300 | 125 | 125 |
|  | 185 | FR-F740-185K | - | 400AF 400A | 600AF 500A | - | S-N300 | 150 | 150 |
|  | 220 | FR-F740-220K | - | 600AF 500A | 600AF 600A | - | S-N400 | $2 \times 100$ | $2 \times 100$ |
|  | 250 | FR-F740-250K | - | 600AF 600A | 600AF 600A | - | S-N600 | $2 \times 100$ | $2 \times 100$ |
|  | 280 | FR-F740-280K | - | 600AF 600A | 800AF 800A | - | S-N600 | $2 \times 125$ | $2 \times 125$ |
|  | 315 | FR-F740-315K | - | 800AF 700A | 800AF 800A | - | S-N600 | $2 \times 150$ | $2 \times 150$ |
|  | 355 | FR-F740-355K | - | 800AF 800A | 800AF 800A | - | S-N600 | $2 \times 200$ | $2 \times 200$ |
|  | 400 | FR-F740-400K | - | 1000AF 900A | 1000AF 1000A | - | S-N800 | $2 \times 200$ | $2 \times 200$ |
|  | 450 | FR-F740-450K | - | 1000AF 1000A | 1000AF 1000A | - | 1000A rated product | $2 \times 250$ | $2 \times 250$ |
|  | 500 | FR-F740-500K | - | 1200AF 1200A | 1200AF 1200A | - | 1000A rated product | $2 \times 250$ | $2 \times 250$ |
|  | 560 | FR-F740-560K | - | 1600AF 1500A | 1600AF 1600A | - | $\begin{aligned} & \text { 1200A rated } \\ & \text { product } \end{aligned}$ | $3 \times 200$ | $3 \times 200$ |

[^8]*2 Install one MCCB per inverter.
For installations in the United States or Canada, use the fuse certified by the UL and cUL.
MCCB INV IIM
MCCB INV- (IM)
*3 The electrical durability of magnetic contactor is 500,000 times. When the magnetic contactor is used for emergency stop during motor driving, the electrical durability is 25 times.
When using the MC for emergency stop during motor driving or using on the motor side during commercial-power supply operation, select the MC with class AC-3 rated current for the motor rated current.
*4 Cable
For the 55 K or less, the recommended cable size is that of the cable (HIV cable ( 600 V class 2 vinyl-insulated cable) etc.) with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$. Assumes that the ambient temperature is $50^{\circ} \mathrm{C}$ or less and the wiring distance is 20 m or less.
For the 75 K or more, the recommended cable size is that of the cable (LMFC (heat resistant flexible cross-linked polyethylene insulated cable) etc.) with continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$ or more. Assumes that the ambient temperature is $50^{\circ} \mathrm{C}$ or less and wiring is performed in an enclosure.

## Selection of rated sensitivity current of earth (ground) leakage breaker

When using the earth leakage circuit breaker with the inverter circuit, select its rated sensitivity current as follows, independently of the PWM carrier frequency:

Breaker designed for harmonic and surge suppression
Rated sensitivity currentl $\Delta \mathrm{n} \geq 10 \times(\lg 1+\operatorname{lgn}+\operatorname{lgi}+\lg 2+\operatorname{lgm})$
Standard breaker
Rated sensitivity currentl $\Delta \mathrm{n} \geq 10 \times\{\lg 1+\lg n+\operatorname{lgi}+3 \times(\lg 2+\operatorname{lgm})\}$
$\lg 1, \lg 2$ : Leakage currents in wire path during commercial power supply operation
Ign : Leakage current of inverter input side noise filter
lgm : Leakage current of motor during commercial power supply operation
Igi : Inverter unit leakage current

Example of leakage current per 1 km during the commercial power supply operation when the CV cable is routed in metal conduit
(Three-phase three-wire delta connection 400 V 60 Hz )


Leakage current example of Three-phase induction motor during the commercial power supply operation
(Totally-enclosed fan-cooled type motor 400 V 60 Hz )

For " 人" connection, the amount of leakage current is $1 / 3$
example

(Note)1. Install the earth leakage breaker (ELB) on the input side of the inverter.
2. In the $\lambda$ connection earthed-neutral system, the sensitivity current is purified against an earth (ground) fault in the inverter output side. Earthing (Grounding) must conform to the requirements of national and local safety regulations and electrical codes. (JIS, NEC section 250, IEC 536 class 1 and other applicable standards)

- Selection example (in the case of the left figure)

|  | Breaker Designed for <br> Harmonic and Surge <br> Suppression | Standard Breaker |
| :--- | :---: | :---: |
| Leakage current <br> $\lg 1(\mathrm{~mA})$ | $\frac{1}{3} \times 66 \times \frac{5 \mathrm{~m}}{1000 \mathrm{~m}}=0.11$ |  |
| Leakage current <br> lgn (mA) | 0 (without noise filter) |  |

Inverter leakage current (with and without EMC filter)
Input power conditions
( 200 V class : $220 \mathrm{~V} / 60 \mathrm{~Hz}, 400 \mathrm{~V}$ class : $440 \mathrm{~V} / 60 \mathrm{~Hz}$,
power supply unbalance within $3 \%$ )

|  | Voltage (V) | EMC Filter |  |
| :---: | :---: | :---: | :---: |
|  |  | ON (mA) | OFF (mA) |
| Phase | 200 | 22(1) * | 1 |
| on | 400 | 30 | 1 |
| Earthed-neutral system | 400 | 1 | 1 |

* For the 200 V class 0.75 K and 1.5 K , the EMC filter is always valid The leakage current is 1 mA .


## Precautions for use of the inverter

## . Safety Precautions

- To operate the inverter correctly and safely, be sure to read the "instruction manual" before starting operation.
- This product has not been designed or manufactured for use with any equipment or system operated under life-threatening conditions.
■ Please contact our sales office when you are considering using this product in special applications such as passenger mobile, medical, aerospace, nuclear, power or undersea relay equipment or system.
■ Although this product is manufactured under strict quality control, safety devices should be installed when a serious accident or loss is expected by a failure of this product.
- The load used should be a three-phase induction motor only.


## Operation

■ A magnetic contactor (MC) provided on the primary side should not be used to make frequent starts and stops. It could cause the inverter to fail.

- However, at this time, the motor cannot be brought to a sudden stop. Hence, provide a mechanical stopping/ holding mechanism for the machine/equipment which requires an emergency stop.
■ It will take time for the capacitor to discharge after shutoff of the inverter power supply. When accessing the inverter for inspection, wait for at least 10 minutes after the power supply has been switched off, and check to make sure that there are no residual voltage using a tester or the like.


## Wiring

- Application of power to the output terminals ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) of the inverter will damage the inverter. Therefore, fully check the wiring and sequence to ensure that wiring is correct, etc. before powering on.
■ The terminals P/+, P1, N/- are provided for connection of a dedicated option. Connect only a dedicated option. Do not short the frequency setting power supply terminal 10 and common terminal 5 or the terminal PC and terminal SD.
■ Do not wire the maker-dedicated terminal PR/PX.


## Installation

- Avoid hostile environment where oil mist, fluff, dust particles, etc. are suspended in the air, and install the inverter in a clean place or put it in an ingress-protected "enclosed" panel. When placing the inverter in a panel, determine the cooling system and panel dimensions so that the ambient temperature of the inverter is within the permissble value. (refer to page 8 for the specified value)
■ Do not install the inverter on wood or other combustible material as it will be hot locally.
- Install the inverter in the vertical orientation.


## - Setting

- The inverter can be operated as fast as a maximum of 400 Hz by parameter setting. Therefore, incorrect setting can cause a danger. Set the upper limit using the maximum frequency limit setting function.
■ A setting higher than the initial value of DC injection brake operation voltage or operation time can cause motor overheat (electronic thermal relay trip).


## Precautions for selection

## Inverter capacity selection

- When operating a special motor or more than one motor in parallel with a single inverter, select the inverter capacity so that 1.1 times the total rated motor current is less than the rated output current of the inverter.


## Starting torque of the motor

- The start and acceleration characteristics of the motor driven by the inverter are restricted by the overload current rating of that inverter. Generally the torque characteristic is less than when the motor is started by a commercial power supply. When torque boost adjustment or simple magnetic flux vector cannot provide enough starting torque, select the inverter of one rank higher capacity or increase the capacities of both the motor and inverter.


## Acceleration and deceleration times

- The acceleration/deceleration time of the motor depends on the motor-generated torque, load torque and moment of inertia of the load ( $G D^{2}$ ).
- When the current limit function or stall prevention function is activated during acceleration/deceleration, increase the acceleration/deceleration time as the actual time may become longer.
■ To decrease the acceleration/deceleration time, increase the torque boost value (setting of a too large value may activate the stall prevention function at a start, longer the acceleration time), use the simple magnetic flux vector control, or increase the inverter and motor capacities. To decrease the deceleration time, it is necessary to add the brake unit (FR-BU, MTBU5), power regeneration common converter (FR-CV), power regeneration unit (MT-RC) or a similar device to absorb braking energy.


## Power transfer mechanism

(gear, belt, chain, etc.)
■ When an oil-lubricated gear box, speed change gear or similar device is used in the power transfer system, note that continuous operation at low decelerated speed only may deteriorate oil lubrication, causing seizure. When performing fast operation at higher than 60 Hz , fully note that such operation will cause strength shortage due to the noise, life or centrifugal force of the power transfer mechanism.

## Instructions for overload operation

- When performing operation of frequent start/stop of the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a continuous flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing bound current, starting current, etc. Decreasing current may increase the life. However, decreasing current will result in insufficient torque and the inverter may not start. Therefore, increase the inverter capacity to have enough allowance for current.


## Installation and selection of moulded case circuit breaker

Install a moulded case circuit breaker (MCCB) on the power receiving side to protect the wiring of the inverter primary side. For MCCB selection, refer to page 57 since it depends on the inverter power supply side power factor (which changes depending on the power supply voltage, output frequency and load). Note that the operation characteristics of the completely electromagnetic MCCB changes according to the higher harmonic current, so a larger capacity must be selected. (Check it in the data of the corresponding breaker.) As an earth (ground) leakage breaker, use the Mitsubishi earth (ground) leakage breaker designed for harmonics and surges. (Refer to page 58.) When installing a moulded case circuit breaker on the secondary side of the inverter, contact each manufacturer for selection of the moulded case circuit breaker.

## Handling of primary side magnetic contactor

For operation via external terminal (terminal STF or STR used), provide a primary side MC to prevent an accident caused by a natural restart at power recovery after a power failure, such as an instantaneous power failure, and to ensure safety for maintenance work. Do not use this magnetic contactor to make frequent starts and stops. (The switching life of the inverter input circuit is about 1,000,000 times.) For parameter unit operation, an automatic restart after power failure is not made and the MC cannot be used to make a start. Note that the primary side MC can stop the operation, but the regenerative brake specific to the inverter does not operate and the motor coasts to stop.

## Handling of secondary side magnetic contactor

Switch the magnetic contactor between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned on while the inverter is operating, overcurrent protection of the inverter and such will activate. When an MC is provided to switch to a commercial power supply, for example, it is recommended to use commercial power supply-inverter switchover operation Pr. 135 to 139.

## Thermal relay installation

The inverter has an electronic thermal relay function to protect the motor from overheating. However, when running multiple motors with one inverter or operating a multi-pole motor, provide a thermal relay (OCR) between the inverter and motor. In this case, set the electronic thermal relay function of the inverter to 0 A . And for the setting of the thermal relay, add the line-to-line leakage current (refer to page 61) to the current value on the motor rating plate.
For low-speed operation where the cooling capability of the motor reduces, it is recommended to use a thermal protector or thermistor-incorporated motor.

## Secondary side measuring instrument

When the wiring length between the inverter and motor is long, select the device that has enough current rating. Otherwise the measuring instrument or CT which is used especially for the 400 V class small-capacity inverter may generate heat due to the influence of line leakage current. To measure and display the output voltage and output current of the inverter, it is recommended to use the terminal AM-5 output function of the inverter.

## Disuse of power factor improving capacitor (power capacitor)

The power factor improving capacitor and surge suppressor on the inverter output side may be overheated or damaged by the harmonic components of the inverter output. Also, since an excessive current flows in the inverter to activate overcurrent protection, do not install a capacitor or surge suppressor. For power factor improvement, use the power factor improving DC reactor (see page 51).

## Wire thickness and wiring distance

When the wiring length between the inverter and motor is long, use thick wires so that the voltage drop of the main circuit cable is $2 \%$ or less especially at low frequency output. (A selection example for the wiring distance of 20 m is shown on page 57 )
Especially at a long wiring distance, the maximum wiring length should be within 500 m since the overcurrent protection function may be misactivated by the influence of a charging current due to the stray capacitances of the wiring. (The overall wiring length for connection of multiple motors should be within the value in the table below.)

| Pr. 72 PWM frequency <br> selection setting <br> (carrier frequency) | $\mathbf{0 . 7 5 K}$ | $\mathbf{1 . 5 K}$ | 2.2K or more |
| :---: | :---: | :---: | :---: |
| 2 | 300 m | 500 m | 500 m |
| 3 to 15 | 200 m | 300 m | 500 m |

Use the recommended connection cable when installing the operation panel away from the inverter unit or when connecting the parameter unit.
For remote operation via analog signal, wire the control cable between the operation box or operation signal and inverter within 30 m and away from the power circuits (main circuit and relay sequence circuit) to prevent induction from other devices.
When using the external potentiometer instead of the parameter unit to set the frequency, use a shielded or twisted cable, and do not earth (ground) the shield, but connect it to terminal 5 as shown below.


## Earth (Ground)

When the inverter is run in the low acoustic noise mode, more leakage currents occur than in the non-low acoustic noise mode due to high-speed switching operation. Be sure to use the inverter and motor after grounding (earthing) them. In addition, always use the earth (ground) terminal of the inverter to earth (ground) the inverter. (Do not use the case and chassis)

## Noise

When performing low-noise operation at higher carrier frequency, electromagnetic noise tends to increase. Therefore, refer to the following measure example and consider taking the measures. Depending on the installation condition, the inverter may be affected by noise in a non-low noise (initial) status.
■ The noise level can be reduced by decreasing the carrier frequency (Pr. 72).
■ As measures against AM radio broadcasting noise and sensor malfunction, turning on the built-in noise reduction filter produces an effect. (For the switching method, refer to the instruction manual.)

- As measures against induction noise from the power cable of the inverter, an effect is produced by putting a distance of 30 cm (at least 10 cm ) or more and using a twisted pair shielded cable as a signal cable. Do not earth (ground) shield but connect it to signal common cable.


## Noise reduction examples



## Leakage currents

Capacitances exist between the inverter I/O cables, other cables and earth and in the motor, through which a leakage current flows. Since its value depends on the capacitances, carrier frequency, etc., low acoustic noise operation at the increased carrier frequency of the inverter will increase the leakage current. Therefore, take the following measures. Select the earth leakage breaker according to its rated sensitivity current, independently of the carrier frequency setting.

## To-earth (ground) leakage currents

| Type | Influence and Measures |
| :---: | :---: |
| Influence and measures | Leakage currents may flow not only into the inverter's own line but also into the other lines through the earth (ground) cable, etc.These leakage currents may operate earth (ground) leakage circuit breakers and earth leakage relays unnecessarily. <br> - Countermeasures If the carrier frequency setting is high, decrease the Pr. 72 $P W M$ frequency selection setting. Note that motor noise increases. Select Pr. 240 Soft-PWM operation selection to make the sound inoffensive. By using earth leakage circuit breakers designed for harmonic and surge suppression in the inverter's own line and other line, operation can be performed with the carrier frequency kept high (with low noise). |
| Undesirable current path |  |

## Line leakage current

| Type | Influence and Measures |
| :---: | :---: |
| Influence and measures | This leakage current flows via a static capacitance between the inverter output cables. <br> The external thermal relay may be operated unnecessarily by the harmonics of the leakage current. When the wiring length is long ( 50 m or more) for the 400 V class smallcapacity model ( 7.5 kW or less), the external thermal relay is likely to operate unnecessarily because the ratio of the leakage current to the rated motor current increases. <br> - Countermeasures <br> Use Pr. 9 Electronic thermal O/L relay. If the carrier frequency setting is high, decrease the Pr. 72 PWM frequency selection setting. <br> Note that motor noise increases. Select Pr. 240 Soft-PWM operation selection to make the sound inoffensive. To ensure that the motor is protected against line-to-line leakage currents, it is recommended to use a temperature sensor to directly detect motor temperature. |
| Undesirable current path |  |

- Harmonic suppression guideline

Harmonic currents flow from the inverter to a power receiving point via a power transformer. The harmonic suppression guidelines were established to protect other consumers from these outgoing harmonic currents.
The three-phase 200 V input specifications 3.7 kW or less are previously covered by "Harmonic suppression guideline for household appliances and general-purpose products" and other models are covered by "Harmonic suppression guideline for consumers who receive high voltage or special high voltage". However, the generalpurpose inverter has been excluded from the target products covered by "Harmonic suppression guideline for household appliances and general-purpose products" in January 2004 and all capacities of all models are now target products of "Harmonic suppression guideline for consumers who receive high voltage or special high voltage".

Harmonic suppression guideline for consumers who receive high voltage or special high voltage
This guideline sets forth the maximum values of harmonic currents outgoing from a high-voltage or especially high-voltage consumer who will install, add or renew harmonic generating equipment. If any of the maximum values is exceeded, this guideline requires that consumer to take certain suppression measures.
Users who use models other than the target models are not covered by the guideline. However, we ask to connect an AC reactor and a DC reactor as before.

For compliance to the "Harmonic suppression guideline for consumers who receive high voltage or special high voltage"

| Input <br> Power <br> Supply | Target <br> Capacity | Measures |
| :---: | :---: | :--- |
| Three- <br> phase 200V |  | Make a judgment based on "Harmonic <br> suppression guideline for consumers who receive <br> high voltage or special high voltage" issued by the <br> Japanese Ministry of Economy, Trade and Industry <br> (formerly Ministry of International Trade and <br> Industry) in September 1994 and take measures if <br> necessary. For calculation method of power supply <br> harmonics, refer to materials below. |
| Three- <br> phase 400V | All <br> capacities | Reference materials <br> "Harmonic suppression measures of the <br> general-purpose inverter" <br> Jan., 2004 Japan Electrical Manufacturer's <br> Association <br> "Calculation method of harmonic current of the <br> general-purpose inverter used by specific <br> consumers" <br> JEM-TR201 (Revised in December 2003) : <br> Japan Electrical Manufacturer's Association |

For compliance to "Harmonic suppression guideline of the general-purpose inverter (input current of 20A or less) for consumers other than specific consumers" published by JEMA

| Input <br> Power <br> Supply | Target <br> Capacity | Measures |
| :---: | :---: | :--- |
| Three- <br> phase 200V | 3.7kW <br> or less | Connect the AC reactor or DC reactor <br> recommended in a catalog or an instruction manual. <br> Reference materials <br> "Harmonic suppression guideline of the general- <br> purpose inverter (input current of 20A or less)" <br> JEM-TR226 (Revised in December 2003): <br> Japan Electrical Manufacturer's Association |

## - Calculation of outgoing harmonic current

Outgoing harmonic current = fundamental wave current (value converterd from received power voltage) $\times$ operation ratio $\times$ harmonic content
Operation ratio: Operation ratio $=$ actual load factor $\times$ operation time ratio during 30 minutes
Harmonic content: Found in Table.

Table 1: Harmonic content (Values of the fundamental current is 100\%)

| Reactor | 5th | 7th | 11th | 13th | 17th | 19th | 23rd | 25th |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Not used | 65 | 41 | 8.5 | 7.7 | 4.3 | 3.1 | 2.6 | 1.8 |
| Used (AC side) | 38 | 14.5 | 7.4 | 3.4 | 3.2 | 1.9 | 1.7 | 1.3 |
| Used (DC side) | 30 | 13 | 8.4 | 5.0 | 4.7 | 3.2 | 3.0 | 2.2 |
| Used (AC, DC sides) | 28 | 9.1 | 7.2 | 4.1 | 3.2 | 2.4 | 1.6 | 1.4 |

Table 2: Rated capacities and outgoing harmonic currents of inverter-driven motors

| Applied Motor | Rated Current [A] |  | Fundamen tal Wave Current Converted from 6.6 kV (mA) | Rated Capacity (kVA) | Fundamental Wave Current Converted from 6.6 kV <br> (No reactor, 100\% operation ratio) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 200V | 400V |  |  | 5th | 7th | 11th | 13th | 17th | 19th | 23rd | 25th |
| 0.75 | 2.74 | 1.37 | 83 | 0.97 | 53.95 | 34.03 | 7.055 | 6.391 | 3.569 | 2.573 | 2.158 | 1.494 |
| 1.5 | 5.50 | 2.75 | 167 | 1.95 | 108.6 | 68.47 | 14.20 | 12.86 | 7.181 | 5.177 | 4.342 | 3.006 |
| 2.2 | 7.93 | 3.96 | 240 | 2.81 | 156.0 | 98.40 | 20.40 | 18.48 | 10.32 | 7.440 | 6.240 | 4.320 |
| 3.7 | 13.0 | 6.50 | 394 | 4.61 | 256.1 | 161.5 | 33.49 | 30.34 | 16.94 | 12.21 | 10.24 | 7.092 |
| 5.5 | 19.1 | 9.55 | 579 | 6.77 | 376.4 | 237.4 | 49.22 | 44.58 | 24.90 | 17.95 | 15.05 | 10.42 |
| 7.5 | 25.6 | 12.8 | 776 | 9.07 | 504.4 | 318.2 | 65.96 | 59.75 | 33.37 | 24.06 | 20.18 | 13.97 |
| 11 | 36.9 | 18.5 | 1121 | 13.1 | 728.7 | 459.6 | 95.29 | 86.32 | 48.20 | 34.75 | 29.15 | 20.18 |
| 15 | 49.8 | 24.9 | 1509 | 17.6 | 980.9 | 618.7 | 128.3 | 116.2 | 64.89 | 46.78 | 39.24 | 27.16 |
| 18.5 | 61.4 | 30.7 | 1860 | 21.8 | 1209 | 762.6 | 158.1 | 143.2 | 79.98 | 57.66 | 48.36 | 33.48 |
| 22 | 73.1 | 36.6 | 2220 | 25.9 | 1443 | 910.2 | 188.7 | 170.9 | 95.46 | 68.82 | 57.72 | 39.96 |
| 30 | 98.0 | 49.0 | 2970 | 34.7 | 1931 | 1218 | 252.5 | 228.7 | 127.7 | 92.07 | 77.22 | 53.46 |
| 37 | 121 | 60.4 | 3660 | 42.8 | 2379 | 1501 | 311.1 | 281.8 | 157.4 | 113.5 | 95.16 | 65.88 |
| 45 | 147 | 73.5 | 4450 | 52.1 | 2893 | 1825 | 378.3 | 342.7 | 191.4 | 138.0 | 115.7 | 80.10 |
| 55 | 180 | 89.9 | 5450 | 63.7 | 3543 | 2235 | 463.3 | 419.7 | 234.4 | 169.0 | 141.7 | 98.10 |


|  | Rated Current [A] |  | Fundamen tal Wave Current Converted from 6.6 kV (mA) | RatedCapacity (kVA) | Fundamental Wave Current Converted from $6.6 \mathrm{kV}$ <br> (With DC reactor , 100\% operation ratio) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 200V | 400V |  |  | 5th | 7th | 11th | 13th | 17th | 19th | 23rd | 25th |
| 75 | 245 | 123 | 8200 | 87.2 | 2237 | 969 | 626 | 373 | 350 | 239 | 224 | 164 |
| 90 | 293 | 147 | 9800 | 104 | 2673 | 1158 | 748 | 445 | 419 | 285 | 267 | 196 |
| 110 | 357 | 179 | 11933 | 127 | 3254 | 1410 | 911 | 542 | 510 | 347 | 325 | 239 |
| 132 | - | 216 | 14400 | 153 | 3927 | 1702 | 1100 | 655 | 615 | 419 | 393 | 288 |
| 160 | - | 258 | 17200 | 183 | 4691 | 2033 | 1313 | 782 | 735 | 500 | 469 | 344 |
| 220 |  | 355 | 23667 | 252 | 6455 | 2797 | 1807 | 1076 | 1011 | 688 | 645 | 473 |
| 250 | - | 403 | 26867 | 286 | 7327 | 3175 | 2052 | 1221 | 1148 | 782 | 733 | 53 |
| 280 | - | 450 | 27273 | 319 | 8182 | 3545 | 2291 | 1364 | 1282 | 873 | 818 | 600 |
| 315 | - | 506 | 30667 | 359 | 9200 | 3987 | 2576 | 1533 | 1441 | 981 | 920 | 675 |
| 355 | - | 571 | 34606 | 405 | 10382 | 4499 | 2907 | 1730 | 1627 | 1107 | 1038 | 761 |
| 400 | - | 643 | 38970 | 456 | 11691 | 5066 | 3274 | 1949 | 1832 | 1247 | 1169 | 857 |
| 450 |  | 723 | 43818 | 512 | 13146 | 5696 | 3681 | 2191 | 2060 | 1402 | 1315 | 964 |
| 500 | - | 804 | 48727 | 570 | 14618 | 6335 | 4093 | 2436 | 2290 | 1559 | 1462 | 1072 |
| 560 | - | 900 | 54545 | 638 | 16364 | 7091 | 4582 | 2727 | 2564 | 1746 | 1636 | 1200 |



## Application to standard motor

When the Mitsubishi standard squirrel-cage motor (SFJR, 4-pole) and inverter of the same capacity are used, the torque characteristics are as shown below.

## Output characteristics

60 Hz torque reference


50 Hz torque reference

*1 The 60 Hz torque reference indicates that the rated torque of the motor running at 60 Hz is $100 \%$, and the 50 Hz torque reference indicates that the rated torque of the motor running at 50 Hz is $100 \%$
*2 Torque boost minimum (0\%)
*3 Torque boost standard (initial value)
*4 Torque boost large ( $0.75 \mathrm{~K} \ldots 10 \%, 1.5 \mathrm{~K}$ to $3.7 \mathrm{~K} . . .7 \%, 5.5 \mathrm{~K}, 7.5 \mathrm{~K} \ldots . .6 \%, 11 \mathrm{~K}$ or more... $4 \%$ )
*5 Enabled for torque boost adjustment ( 3.7 kW or less) or simple magnetic flux vector control (slip compensation setting)
*6 A general-purpose, squirrel-cage motor must be used at lower continuous operating torque in rated operation as shown in the chart since the cooling capability of the fan *7 installed on the rotor reduces at a lower speed. (Instantaneous torque occurs)
*7 $200 / 220 \mathrm{~V} 60 \mathrm{~Hz}$ or 200 V 50 Hz in the chart indicates a motor torque standard (base frequency set in Pr . 3 of the inverter) and is not the frequency of the power supply. You can also set 60 Hz in a 50 Hz power supply area.
*8 As shown in the chart, the 60 Hz torque reference setting allows you to use the motor more efficiently as it can bring out the $100 \%$ torque of the motor continuously.
*9 This chart shows the characteristic available when a constant-torque load is selected for load pattern selection (Pr. 14).

## - Motor loss and temperature rise

The motor operated by the inverter has a limit on the continuous operating torque since it is slightly higher in temperature rise than the one operated by a commercial power supply. At a low speed, reduce the output torque of the motor since the cooling effect decreases. When $100 \%$ torque is needed continuously at low speed, consider using a constant-torque motor.

## - Torque characteristic

The motor operated by the inverter may be less in motor torque (especially starting torque) than the one driven by the commercial power supply. It is necessary to fully check the load torque characteristic of the machine.

## - Vibration

The machine-installed motor operated by the inverter may be slightly greater in vibration than the one driven by the commercial power supply. The possible causes of vibration are as follows.
1.Vibration due to imbalance of the rotator itself including the machine
2.Resonance due to the natural oscillation of the mechanical system. Caution is required especially when the machine used at constant speed is operated at variable speed. The frequency jump function allows
resonance points to be avoided during operation. (During acceleration/deceleration, the frequency within the setting range is passed through.) An effect is also produced if the PWM carrier frequency in Pr. 72 is changed. When a two-pole motor is operated at higher than 60 Hz , caution should be taken since such operation may cause abnormal vibration.

## Inverter-driven 400 V class motor

When driving a 400 V class motor by the inverter, surge voltages attributable to the wiring constants may occur at the motor terminals, deteriorating the insulation of the motor. In such a case, consider taking the following measures.
(1) Rectifying the motor insulation

1. Use a "400V class inverter driven insulationenhanced motor".
Note: The four poles of the Mitsubishi standard motor (SF-JR, SB-JR) have the 400 V class inverter driving insulation-enhanced feature.
2. For the dedicated motor such as the constant-torque motor and low-vibration motor, use the "inverterdriven, dedicated motor".
(2) Suppressing the surge voltage on the inverter side Connect a filter on the secondary side of the inverter to suppress a surge voltage so that the terminal voltage of the motor is 850 V or less. When driving by the Mitsubishi inverter, connect an optional surge voltage suppression filter (FR-ASF-H) for the 55K or less and an optional sine wave filter (MT-BSL, BSC) for the 75K or more on the inverter output side.

## Application to constant-torque motor

Since a constant-torque motor is greater in current than the standard motor, the inverter capacity may be one rank higher.
For a constant-torque motor, decrease the torque boost setting. Recommended value $0.75 \mathrm{~kW} . . .6 \%$, 1.5 to $3.7 \mathrm{~kW} . . .4 \%$,

> 5.5 to 7.5 kW ... $3 \%, 11$ to 37 kW ... $2 \%$, 45 to $55 \mathrm{~kW} . . .1 .5 \%, 75 \mathrm{k}$ or more... $1 \%$ When two or more motors are operated synchronously, torque imbalance is likely to occur as motor slip is smaller than that of the standard motor.

## Application to special motors

## Pole changing motor

As this motor differs in rated current from the standard motor, confirm the maximum current of the motor and select the inverter. Be sure to change the number of poles after the motor has stopped. If the number of poles is changed during rotation, the regenerative overvoltage protecion circuit may be activated to cause an inverter alarm, coasting the motor to a stop.

## - Geared motor

The continuous operating rotation range of this motor changes depending on the lubrication system and maker. Especially in the case of oil lubrication, continuous operation in the low speed range only can cause gear seizure. For fast operation at higher than 60 Hz , please consult the maker.

## - Synchronous motor

This motor is not suitable for applications of large load variation or impact, where out-of-sync is likely to occur.
Please contact us when using this motor because its starting current and rated current are greater than those of the standard motor and will not rotate stably at low speed.

| Item | FR-F500 (L) | FR-F700 |
| :---: | :---: | :---: |
| Changed/cleared functions | Simple mode parameters 61 | Simple mode parameters 15 |
|  | Pr. 0 Torque boost initial value 11K to 55K: 2\% | Pr. 0 Torque boost initial value <br> 11K to 37 K : $2 \%, 45 \mathrm{~K}, 55 \mathrm{~K}: 1.5 \%$ <br> (When the torque boost value of the FR-F500 series used was the initial value, it is not necessary to change the torque boost value from the initial value when replacing with the FR-F700 series.) |
|  | User group 1 (16), user group 2 (16) (Pr. 160, Pr. 173 to Pr. 175) | User group (16) only Setting methods were partially changed (Pr. 160, Pr. 172 to Pr. 173) |
|  | User initial value setting (Pr. 199) | "User initial value setting" (Pr. 199) was cleared Substitutable with the copy function of the operation panel (FR-DU07) |
|  | DC injection brake function with terminal (X13 signal) (Pr. 11 setting value 8888, Pr. 180 to Pr. 186 setting value 13) | DC injection brake function with terminal was cleared Start in reverse rotation is possible with flying start function (frequency search of automatic restart after instantaneous power failure function) |
|  | Long wiring mode (Pr. 240 setting 10, 11) | Setting is not necessary (Pr. 240 settings " 10 " and "11" were cleared) |
|  | Intelligent optimum acceleration/deceleration (Pr. 60 setting "3" and Pr. 61 to Pr. 63) | Function was cleared <br> For deceleration time, overvoltage alarm can be avoided with regeneration avoidance function (Pr. 882 to Pr. 885) |
|  | Automatic torque boost (Pr. 38, Pr. 39) | Automatic torque boost was cleared because of addition of "Simple magnetic flux vector" (Pr. 80) |
| Terminal block | Removable terminal block | Removable terminal block Priority compatibility (Terminal block of the F500 can be mounted) |
| PU | FR-PU04, DU04 | FR-DU07 <br> FR-DU04 unavailable (Partly restricted when the FRPU04 is used.) |
| Plug-in option | Dedicated plug-in option (not compatible) |  |
|  | Computer link, relay output option FR-A5NR | Built into the inverter <br> (RS-485 terminals, relay output 2 points) |
|  | Three boards can be mounted | One board can be mounted |
| Installation size | FR-F720-0.75K, 2.2K, 3.7K, $7.5 \mathrm{~K}, 18.5 \mathrm{~K}, 22 \mathrm{~K}, 37 \mathrm{~K}, 45 \mathrm{~K}$, FR-F740-0.75K to $3.7 \mathrm{~K}, 7.5 \mathrm{~K}, 22 \mathrm{~K}, 37 \mathrm{~K}$ to 55 K are compatible in mounting dimensions For other capacities, an optional intercompatibility attachment (FR-AAT) is necessary. |  |



1. Gratis warranty period and coverage
[Gratis warranty period]
Note that an installation period of less than one year after installation in your company or your customer's premises or a period of less than18 months (counted from the date of production) after shipment from our company, whichever is shorter, is selected.
[Coverage]
(1) Diagnosis of failure

As a general rule, diagnosis of failure is done on site by the customer.
However, Mitsubishi or Mitsubishi service network can perform this service for an agreed upon fee upon the customer's request.
There will be no charges if the cause of the breakdown is found to be the fault of Mitsubishi.
(2) Breakdown repairs

There will be a charge for breakdown repairs, exchange replacements and on site visits for the following four conditions, otherwise there will be a charge.

1) Breakdowns due to improper storage, handling, careless accident, software or hardware design by the customer.
2) Breakdowns due to modifications of the product without the consent of the manufacturer.
3) Breakdowns resulting from using the product outside the specified specifications of the product.
4) Breakdowns that are outside the terms of warranty.

Since the above services are limited to Japan, diagnosis of failures, etc. are not performed abroad.
If you desire the after service abroad, please register with Mitsubishi. For details, consult us in advance.
2. Exclusion of chance loss from warranty liability

Regardless of the gratis warranty term, compensation to chance losses incurred to your company or your customers by failures of Mitsubishi products and compensation for damages to products other than Mitsubishi products and other services are not covered under warranty.
3. Repair period after production is discontinued

Mitsubishi shall accept product repairs for seven years after production of the product is discontinued.
4. Terms of delivery

In regard to the standard product, Mitsubishi shall deliver the standard product without application settings or adjustments to the customer and Mitsubishi is not liable for on site adjustment or test run of the product.

## International FA center



- North American FA Center

MITSUBISHI ELECTRIC AUTOMATION, INC.
500 Corporate Woods Parkway, Vernon Hills, IL60061 U.S.A
TEL. +1-847-478-2100 FAX. +1-847-478-0327

- Korean FA Center

MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD
B1F,2F, 1480-6, Gayang-Dong, Gangseo-Gu, Seoul, 157-200, Korea TEL. +82-2-3660-9607 FAX. +82-2-3664-0475

- Taiwan FA Center

SETSUYO ENTERPRISE CO, LTD
6F No.105, Wu Kung 3rd RD, Wu-Ku Hsiang Taipei Hsien, 248, Taiwan
TEL. +886-2-2299-2499 FAX. +886-2-2299-2509

## - Beijing FA Center

MITSUBISHI ELECTRIC AUTOMATION (SHANGHAI) LTD. BEIJING OFFICE 9F Office Tower 1, Henderson Center, 18 Jianguomennei Avenue, Dongcheng District, Beijing, China 100005
TEL. +86-10-6518-8830 FAX. +86-10-6518-8030

- Russian FA Center

MITSUBISHI ELECTRIC EUROPE B.V
-Representative Office in St. Petersburg
Sverdlovskaya Emb.,44, Bld Sch, BC "Benua";195027, St.Petersburg, Russia TEL. +7-812-633-3496 FAX. +7-812-633-3499

- Tianjin FA Center

MITSUBISHI ELECTRIC AUTOMATION (SHANGHAI) LTD. TIANJIN OFFICE B-2 801/802, Youyi Building, No. 50 Youyi Road, Hexi District, Tianjin, China 300061
TEL +86-22-2813-1015 FAX. +86-22-2813-1017

- Shanghai FA Center

MITSUBISHI ELECTRIC AUTOMATION (SHANGHAI) LTD.
4/F Zhi Fu Plazz, No. 80 Xin Chang Road, Shanghai, China 200003
TEL. +86-21-6121-2460 FAX. +86-21-6121-2424

- Guangzhou FA Center

MITSUBISHI ELECTRIC AUTOMATION (SHANGHAI) LTD. GUANGZHOU OFFICE
Rm.1609, North Tower, The Hub Center, No.1068, Xing Gang East Road,
Haizhu District, Guangzhou, China 510335
TEL. +86-20-8923-6713 FAX. +86-20-8923-6715

- Hong Kong FA Center

MITSUBISHI ELECTRIC AUTOMATION (Hong Kong) LTD.
10th Floor, Manulife Tower, 169 Electric Road, North Point, Hong Kong TEL.+852-2887-8870 FAX. +852-2887-7984

- India FA Center

Mitsubishi Electric Asia Pvt. Ltd. Gurgaon Branch
2nd Floor, DLF Building No.9B, DLF Cyber City Phase III, Gurgaon 122002 Haryana, India
TEL. +91-124-4630300 FAX. +91-124-4630399

- Thailand FA Center

MITSUBISHI ELECTRIC AUTOMATION (THAILAND) CO., LTD.
Bang-Chan Industrial Estate No.111, Soi Serithai 54, T.Kannayao, A.Kannayao, Bangkok 10230

TEL. +66-2-906-3238 FAX. +66-2-906-3239
ASEAN FA Center
MITSUBISHI ELECTRIC ASIA PTE, LTD.
307 Alexandra Road \#05-01/02, Mitsubishi Electric Building, Singapore 159943
TEL. +65-6470-2480 FAX. +65-6476-7439

- European FA Center

MITSUBISHI ELECTRIC EUROPE B. V. GERMAN BRANCH
Gothaer Strasse 8, D-40880 Ratingen, Germany
TEL. +49-2102-486-0 FAX. +49-2102-486-1120

- UK FA Center

MITSUBISHI ELECTRIC EUROPE B. V. UK BRANCH Travellers Lane, Hatfield, Hertfordshire, AL10 8XB, UK. TEL. +44-1707-276100 FAX. +44-1707-278695

- Central and Eastern Europe FA Center MITSUBISHI ELECTRIC EUROPE B.V. CZECH BRANCH Avenir Business Park, Radlicka 714/113a,158 00 Praha 5, Czech Republic TEL. +420-251-551-470 FAX. +420-251-551-471
- Brazil FA Center

MELCO-TEC Representacao Comercial e Assessoria Tecnica Ltda
Av. Paulista 1439, conj.74, Bela Vista CEP: 01311-200 Sao Paulo-SP-Brazil
TEL. +55-11-3146-2202 FAX. $+55-11-3146-2217$


## $\triangle$ Safety Warning

To ensure proper use of the products listed in this catalog, please be sure to read the instruction manual prior to use.


[^0]:    Select the installation screws whose length will not exceed the effective depth of the installation screws threads.

[^1]:    *1 Differ according to capacities. (55K or less/75K or more)
    *2 Differ according to capacities. ( $0.75 \mathrm{~K} / 1.5 \mathrm{~K}$ to $3.7 \mathrm{~K} / 5.5 \mathrm{~K}, 7.5 \mathrm{~K} / 11 \mathrm{~K}$ to $37 \mathrm{~K} / 45 \mathrm{~K}, 55 \mathrm{~K} / 75 \mathrm{~K}$ or more)
    *3 Differ according to capacities. (7.5K or less/11K or more)
    *4 Differ according to capacities. ( 7.5 K or less $/ 11 \mathrm{~K}$ to $55 \mathrm{~K} / 75 \mathrm{~K}$ or more)

[^2]:    *1 Differ according to capacities. (55K or less/75K or more)

[^3]:    *1 Differ according to capacities. (55K or less/75K or more)
    *2 Setting can be made for the 75 K or more.

[^4]:    *1 Differ according to capacities. (55K or less/75K or more)

[^5]:    (Pr.) 891
    $\rightarrow$ Refer to the section about Pr. 52 and other relevant parameters.

[^6]:    Resetting the inverter initializes the internal thermal integrated data of the electronic thermal relay function.
    The error message shows an operational error. The inverter output is not shut off.
    Warnings are messages given before major failures occur. The inverter output is not shut off.
    Minor faults warn the operator of failures with output signals. The inverter output is not shut off.
    When major failures occur, the protective functions are activated to shut off the inverter output and output the alarms.
    *6 The external thermal operates only when the OH signal is set in Pr. 178 to Pr. 189 (input terminal function selection).

[^7]:    * Rated power consumption. The power supply specifications of the FR series manual controllers and speed controllers are 200VAC 50Hz, 220V/ 220 VAC 60 Hz , and 115 VAC 60 Hz .

[^8]:    *1 Selections for use of the Mitsubishi 4-pole standard motor with power supply voltage 200VAC (200V class)/400VAC (400V class) 50 Hz .

