IEC Type Industrial Control Relays TeSys D-Line, K-Line, and SK-Line

Class 8501

CONTENTS

Description
 Page

Overview. 2
TeSys D-Line Ordering Information. 3
TeSys D-Line Dimensions . 9
TeSys D-Line Application Data . 10
K-Line Ordering Information . 13
K-Line Dimensions . 16
K-Line Application Data . 17
SK-Line Ordering Information . 19
Accessories 21
Long Distance Control Data . 24

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line

Overview

TeSys D-Line Relays

K-Line Relays

This two pole relay is the smallest IEC Type relay on the market. It is approved for use around the world. SK-Line relays are usually mounted on 35 mm DIN 3 track. The fixed contacts in this relay have a NEMA A600 rating and a limited DC rating, in addition to the standard IEC ratings, making it suitable for use in most any AC control circuit and some DC control circuits. An adder deck can be added to the basic two pole $A C$ relay to make it a 4 pole relay.
For more information on these relays, see pages 19 and 20.

SK-Line Relays

CAD503

CAD323
Instantaneous Control Relays

Terminal Type	Number of Contacts	Contact Composition		Catalog Number	Weight lb. (kg)
		Normally Open	Normally Closed		
		1	\dagger		
Screw Clamp	5	5	0	CAD50 4 *	1.28 (0.580)
Screw Clamp		3	2	CAD32 4 *	1.28 (0.580)
	5	5	0	CAD503 4 *	1.28 (0.580)
Spring Terminal		3	2	CAD323 4 *	1.28 (0.580)

Instantaneous Auxiliary Contact Blocks (for use in normal operation environments)

Number of Contacts	Maximum Number per Device Clip-on Mounting		Termination Type	Contact Composition		Catalog Number	Weight lb. (kg)
	Front	Left Side Only		Normally Open	Normally Closed		
2	1	-	Screw Clamp	2	0	LADN20	0.07 (0.030)
				1	1	LADN11	0.07 (0.030)
				0	2	LADN02	0.07 (0.030)
			Spring Terminal	2	0	LADN203	0.07 (0.030)
				1	1	LADN113	0.07 (0.030)
				0	2	LADN023	0.07 (0.030)
	-	1	Screw Clamp	2	0	LAD8N20	0.07 (0.030)
				1	1	LAD8N11	0.07 (0.030)
				0	2	LAD8N02	0.07 (0.030)
4 +	1	-	Screw Clamp	4	0	LADN40	0.11 (0.050)
				3	1	LADN31	0.11 (0.050)
				2	2	LADN22	0.11 (0.050)
				1	3	LADN13	0.11 (0.050)
				0	4	LADN04	0.11 (0.050)
			Spring Terminal	4	0	LADN403	0.11 (0.050)
				3	1	LADN313	0.11 (0.050)
				2	2	LADN223	0.11 (0.050)
				1	3	LADN133	0.11 (0.050)
				0	4	LADN043	0.11 (0.050)
4 +	1	-	Screw Clamp	2 -	$2 \square$	LADC22	0.11 (0.050)
			Spring Terminal	$2 \square$	$2 \square$	LADC223	0.11 (0.050)

Instantaneous Auxiliary Contacts
With Dust and Damp Protected Contacts (for use in particularly harsh industrial environments)

Common Coil Voltage Codes

ac $50 / 60 \mathrm{~Hz}$ Coil (for additional voltage code options see page 7).

Volts	12	24	48	120	208	240	277	480	600		
Code	J7	B7	E7	G7	LE7	U7	W7	T7	X7		
dc Coil (coils have built in suppression as standard)											
Volts	12	24	36	48	60	72	110	125	220	250	440
Code	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD

Volts	5	12	24	48	72
Code	AL	JL	BL	EL	SL

[^0]
IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line TeSys Ordering Information

LADT

Time Delay Auxiliary Contact Blocks

Number and Type of Contacts	Maximum Number per Device Front Mounting	Time Delay Type	Termination Type	Range	Catalog Number	Weight Ib. (kg)

+ With extended scale from 0.1 to 0.6 s .
- With switching time of $40 \mathrm{~ms} \pm 15 \mathrm{~ms}$ between opening of the N / C contact and closing of the N / O contact.

Mechanical Latch Blocks

Unlatching Control	Maximum Number per Device Front mounting	Catalog Number	Weight lb. (kg)
	1	LA6DK10 Δ	$0.15(0.070)$
		LAD6K10 \triangle	$0.15(0.070)$

$\star \quad$ Power should not be simultaneously applied or maintained to the mechanical latching block and the CAD relay. The duration of the control signal to the mechanical latching block and the CAD relay should be $\geq 100 \mathrm{~ms}$.

Coil Suppressor Modules
These modules clip onto the right hand side of the control relay and the electrical connection is instantly made. Adding an input module is still possible.
RC Circuits (Resistor-Capacitor)

- Effective protection for circuits highly sensitive to "high frequency" interference.
- Voltage limited to 3 Uc maximum and oscillating frequency limited to 400 Hz maximum.
- Slight increase in drop-out time (1.2 to 2 times the normal time).

For Mounting On:	Operational Voltage	Catalog Number	Weight Ib. (kg)
CAD (Vac)	24 to 48 Vac	LAD4RCE	0.03 (0.012)
	110 to 240 Vac	LAD4RCU	$0.03(0.012)$

Varistors (Peak Limiting)

LAD4

- Protection provided by limiting the transient voltage value to 2 Uc maximum.
- Maximum reduction of transient voltage peaks.

CAD (Vac)	24 to 48 Vac	LAD4VE	0.03 (0.012)
	50 to 127 Vac	LAD4VG	0.03 (0.012)
	110 to 250 Vac	LAD4VU	0.03 (0.012)

Bidirectional Peak Limiting Diode

- Protection provided by limiting the transient voltage value to 2 Uc maximum.
- Maximum reduction of transient voltage peaks.

CAD (Vac)	24 Vac	LAD4TB	0.03 (0.012)
	72 Vac	LAD4TS	$0.03(0.012)$

A Standard coil voltage codes.									
Vac and Vdc	24	$32 / 36$	$42 / 48$	$60 / 72$	100	$110 / 127$	$220 / 240$	$256 / 277$	$380 / 415$
Code	B	C	E	EN	K	F	M	U	Q

Cabling Accessory

| Description | Catalog Number | Weight lb (kg) | |
| :--- | :--- | :--- | :--- | :--- |
| Mounting Adaptor
 For adapting existing wiring
 to a new product | Without coil suppression | LAD4BB | $0.04(0.019)$ |

Electronic Serial Timer Modules \mathbf{A}

On-delay Type			
Operational Voltage	Time Delay	Catalog Number	Weight lb (kg)
24 to $250 \mathrm{Vac} / \mathrm{Vdc}$	0.1 to 2 s	LA4DTOU	0.09 (0.040)
	1.5 to 30 s	LA4DT2U	0.09 (0.040)
	25 to 500 s	LA4DT4U	0.09 (0.040)
Off-delay Type			
24 to $250 \mathrm{Vac} / \mathrm{Vdc}$	0.1 to 2 s	LA4DROU	0.11 (0.050)
	1.5 to 30 s	LA4DR2U	0.11 (0.050)
	25 to 500 s	LA4DR4U	0.11 (0.050)

Auto-Man-Stop Control Modules

For local override operation tests with two-position "Auto-Man" switch and "O-l" switch		
Mounted using adaptor LAD4BB, to be ordered separately, see listing above.		
	Catalog Number	Weight lb (kg)
	LA4DMK	$0.09(0.040)$

A For 24 V operation, the relay must be fitted with a 21 V coil (code Z 7).

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line TeSys Ordering Information

Accessories (to be ordered separately)

For Connection				
Description	For Mounting On:	Must be Ordered in Multiplies of:	Catalog Number	Weight lb. (kg)
For Marking				
Sheet of 64 self-adhesive blank labels 8×33	CAD, LAD (4 contacts), LA6DK	10	LAD21	0.04 (0.020)
Sheet of 112 self-adhesive blank labels 8×12	$\begin{aligned} & \text { LAD (2 contacts), } \\ & \text { LADT } \end{aligned}$	10	LAD22	0.04 (0.020)
Strips of blank, self-adhesive labels for printing by plotter (4 sets of 5 strips)	All products	35	LAD24	0.44 (0.200)
"SIS Label" label creation software for labels LAD-21 and 22	French version	1	XBY1FR	0.13 (0.060)
	English version	1	XBY1EN	0.13 (0.060)
For Protection				
Lockout cover	LADT, LADR	1	LA9D901	0.01 (0.005)
Relay cover preventing access to the moving contact carrier	CAD	1	LAD9ET1	0.008 (0.004)

Replacement Coils (Vac)

LXD1

Specifications					
Average consumption at $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$: - inrush ($\cos \varphi=0.75$) $50 / 60 \mathrm{~Hz}: 70$ VA at 50 Hz - sealed ($\cos \varphi=0.3$) $50 / 60 \mathrm{~Hz}: 8 \mathrm{VA}$ at 60 Hz Operating rate $\theta \leq 140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right): 0.85$ at 1.1 Uc					
Coil Voltage Uc	Average Resistance at $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right) \pm 10 \%$	Inductance of Closed Circuit	Catalog Number	Voltage Code	Weight lb. (kg)
V	Ω	H			
12	6.3	0.26	LXD1J7	J7	0.15 (0.070)
21 +	5.6	0.24	LXD1Z7	Z7	0.15 (0.070)
24	6.19	0.26	LXD1B7	B7	0.15 (0.070)
32	12.3	0.48	LXD1C7	C7	0.15 (0.070)
36	12.83	-	LXD1CC7	CC7	0.15 (0.070)
42	19.15	0.77	LXD1D7	D7	0.15 (0.070)
48	25	1	LXD1E7	E7	0.15 (0.070)
60	34.60	-	LXD1EE7	EE7	0.15 (0.070)
100	100.4	-	LXD1K7	K7	0.15 (0.070)
110	130	5.5	LXD1F7	F7	0.15 (0.070)
115	137.2	-	LXD1FE7	FE7	0.15 (0.070)
120	159	6.7	LXD1G7	G7	0.15 (0.070)
127	192.5	7.5	LXD1FC7	FC7	0.15 (0.070)
200	410.7	-	LXD1L7	L7	0.15 (0.070)
208	417	16	LXD1LL7	LL7	0.15 (0.070)
220/230	539	22	LXD1M7 *	M7	0.15 (0.070)
230	595	21	LXD1P7	P7	0.15 (0.070)
230/240	645	25	LXD1U7 ${ }^{\text {■ }}$	U7	0.15 (0.070)
277	781	30	LXD1W7	W7	0.15 (0.070)
380/400	1580	60	LXD1Q7	Q7	0.15 (0.070)
400	1810	64	LXD1V7	V7	0.15 (0.070)
415	1938	74	LXD1N7	N7	0.15 (0.070)
440	2242	79	LXD1R7	R7	0.15 (0.070)
480	2300	85	LXD1T7	T7	0.15 (0.070)
600	3600	135	LXD1X7	X7	0.15 (0.070)
690	5600	190	LXD1Y7	Y7	0.15 (0.070)

+ Voltage for relays with serial timer modules, with 24 V supply.
\star This coil can be used on 240 V at 60 Hz .
- This coil can be used on $230 / 240 \mathrm{~V}$ at 50 Hz and on 240 V only at 60 Hz .

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line TeSys Mounting Dimensions

CAD (Vdc Coil) or (Low Consumption Vdc Coil)

CAD (Vac Coil)
Panel Mounted

Panel Mounted

CAD (Vac Coil) or (Low Consumpsion Coil)

CAD -	$\mathbf{3 2}$	$\mathbf{3 2 3}$
b	$\mathbf{5 0}$	$\mathbf{5 0 3}$
$\mathrm{c} \quad$ without cover or add-on blocks	$3.03(77)$	$3.90(99)$
with cover, without add-on blocks	$3.66(93)$	$3.66(93)$
$\mathrm{c} 1 \quad$ with LADN or C (2 or 4 contacts)	$3.74(95)$	$3.74(95)$
$\mathrm{c} 2 \quad$ with LA6DK10	$5.96(126)$	$4.96(126)$
$\mathrm{c} 3 \quad$ with LADT, R, S	$5.43(138)$	$5.43(138)$
	with LADT, R, S and sealing cover	$5.91(150)$

(1) Two elongated holes 0.18×0.35 " $(4.5 \times 9 \mathrm{~mm})$

Mounted on AM1DP200 or DE200 Mounting Track

c	(AM1DP200) (1)	$3.46(88)$	$3.82(97)$	
c	(AM1DE200) (1)	$3.78(96)$	$4.13(105)$	

Dimensions
Inches
mm

Tesys Application Data

Type				CAD (Vac)	CAD (Vdc)	CAD (Vdc) Low Consumption
Rated Insulation Voltage (Ui)	Conforming to IEC Overvoltage catego and degree of pollu	$\begin{aligned} & \hline 47-1-1 \\ & 11 \\ & 3 \end{aligned}$	V	690	690	690
	Conforming to UL, CSA		V	600	600	600
Rated Impulse Withstand Voltage (Uimp)	Conforming to IEC	47-1-1	kV	6	6	6
Separation of Electrical Circuits	To IEC 536 and VD			Reinforced insulation up to 400 V		
Conforming to Standards				IEC 60947-1-1, N-F C 63-140, VDE 0660, BS 4794. EN 60947-5-15		
Approvals				UL File: E164353 CCN: NKCR CSA File: LR43364 Guide: 321103 CE		
Protective Treatment	Conforming to IEC			"TH" (Tropical Finish) See page 23 for details.		
Degree of Protection	Conforming to VDE			Front face protected against direct finger contact IP 2X		Protection against direct finger contact
Ambient Air Temperature Around the Device	Storage		${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	-76 to 176 (-60 to +80)	-76 to $176(-60$ to +80$)$	-76 to 176 (-60 to +80)
	Operation, conformin	o IEC 255 (80 to 110\% UC)	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	23 to $140(-5$ to +60$)$	23 to 140 (-5 to +60$)$	23 to 140 (-5 to +60$)$
	For operation at Uc		${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	-40 to $158(-40$ to +70$)$	-40 to $158(-40$ to +70$)$	-40 to $158(-40$ to +70$)$
Maximum Operating Altitude	Without derating		ft (m)	9843 (3000)	9843 (3000)	9843 (3000)
Operating Positions	Without derating, in the following positions:					
Shock Resistance Half sine wave for 11 ms	Control relay open			10 gn	10 gn	10 gn
	Control relay closed			15 gn	15 gn	15 gn
Vibration Resistance $\mathbf{\Delta}$$5 \text { to } 300 \mathrm{~Hz}$	Control relay open			2 gn	2 gn	2 gn
	Control relay closed			4 gn	4 gn	4 gn
Connection to Screw Clamp Terminals	Stranded wire without cable end	1 conductor	AWG $\left(\mathrm{mm}^{2}\right)$	\# 18 to \# 12 (1 to 4)	\# 18 to \# 12 (1 to 4)	\# 18 to \# 12 (1 to 4)
		2 conductors	AWG (mm^{2})	\# 18 to \# 12 (1 to 4)	\# 18 to \# 12 (1 to 4)	\# 18 to \# 12 (1 to 4)
	Stranded wire without cable end	1 conductor	AWG (mm^{2})	\# 18 to \# 12 (1 to 4)	\# 18 to \# 12 (1 to 4)	\# 18 to \# 12 (1 to 4)
		2 conductors	AWG (mm^{2})	\# 18 to \# 14 (1 to 2.5)	\# 18 to \# 14 (1 to 2.5)	\# 18 to \# 14 (1 to 2.5)
	Solid wire without cable end	1 conductor	AWG (mm^{2})	\# 18 to \# 12 (1 to 4)	\# 18 to \# 12 (1 to 4)	\# 18 to \# 12 (1 to 4)
		2 conductors	AWG (mm^{2})	\# 18 to \# 12 (1 to 4)	\# 18 to \# 12 (1 to 4)	\# 18 to \# 12 (1 to 4)
	Tightening torque		lb -in (N•m)	15 (1.7)	15 (1.7)	15 (1.7)
Connection to Spring Terminals	1 or 2 stranded or solid without cable end		AWG (mm^{2})	\# 18 to \# 14 (1 to 2.5)	\# 18 to \# 14 (1 to 2.5)	\# 18 to \# 14 (1 to 2.5)

4 In the least favorable direction, without change of contact state, with coil supplied at Uc.

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line Tesys Application Data

Control Circuit Characteristics

+ The product life expressed above is based on average usage and normal operating conditions. Actual operating life will vary with conditions. The above statements are not intended to, nor shall they create any expressed or implied warranties as to product operation or life. For information on the listed warranty offered on this product, refer to the Square D terms and conditions of sale found in the Square D Digest.

Characteristics of Instantaneous Contacts incorporated in the Control Relay

Number of Contacts			5
Rated Operational Voltage (Ue)	Up to	V	690
Rated Insulation Voltage (Ui)	Conforming to IEC 60947-1-1	V	690
	Conforming to UL, CSA	V	600
Rated Conventional Thermal Current (Ith)	For ambient temperature $\leq 104{ }^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$	A	10
Frequency of Operational Current		Hz	25 to 400
Minimum Switching Capacity	U min.	V	17
	1 min .	mA	5
Short-circuit Protection	Conforming to IEC 60947-1-1		gG fuse: 10 A (10 Amp Class J Time delay)
Rated Making Capacity	Conforming to IEC 60947-1-1 I rms		140 Aac, 250 Adc
Short Time Rating	Permissible for 1 s	A	100
	500 ms	A	120
	100 ms	A	140
Insulation Resistance		$\mathrm{M} \Omega$	> 10
Non-overlap time	Guaranteed between N/O and N/C contacts	ms	1.5 (on energization and on de-energization)
Tightening Torque	Phillips $\mathrm{n}^{\circ} 2$ and $\varnothing 6$	Ib-in (Nem)	10.6 (1.2)
Non-overlap Distance			Linked contacts in association with auxiliary contacts LADN
Linked Contacts	According to draft standard IEC 60947-4-5		The three " N / O " contacts and the two " N / C " contacts of CADN32 are linked mechanically by one mobile contact holder.

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line

 Tesys Application DataContact Ratings

AC Ratings								DC Ratings			
Volts	Inductive 35\% Power Factor						Resistive 75\% Power Factor	Volts	Inductive		
	UL Rating	Make		Break		Cont. Amps	Make, Break \& Cont. Amps		UL Rating	Make \& A	
		Amps	VA	Amps	VA				UL Rating	Break Amps	Amps
120	A600	60	7200	6	720	10	10	125		0.55	2.5
240		30	7200	3	720	10	10	250	Q600	0.27	2.5
480		15	7200	1.5	720	10	10	600		0.10	2.5
600		12	7200	1.2	720	10	10				

AC Supply, Categories AC-14 and AC-15 (conforming to IEC 60947-1-1)

	V	24	48	115	230	400	440	600
1 million operating cycles \uparrow	VA	60	120	280	560	960	1050	1440
3 million operating cycles \uparrow	VA	16	32	80	160	280	300	420
10 million operating cycles \uparrow	VA	4	8	20	40	70	80	100

DC Supply, Categories DC-13

Electrical durability (up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the power.

	V	24	48	125	250	440
1 million operating cycles \uparrow	W	120	90	75	68	61
3 million operating cycles \uparrow	W	70	50	38	33	28
10 million operating cycles a	w	25	18	14	12	10

Utilization Categories for Control Relays Conforming to IEC 60947-1-1

AC Applications		
	Category AC-14 (1)	This category applies to the switching of electromagnetic loads whose power drawn with the electromagnet closed is less than 72 VA. Application example: Switching the operating coil of contactors and relays.
	Category AC-15 (1)	This category applies to the switching of electromagnetic loads whose power drawn with the electromagnet closed is more than 72 VA. Application example: Switching the operating coil of contactors.
DC Applications		
	Category DC-13	This category applies to the switching of electromagnetic loads for which the time taken to reach 95% of the steady state current ($\mathrm{T}=$ 0.95) is equal to 6 times the power P drawn by the load (with $\mathrm{P} \geq 50 \mathrm{~W}$).
4 The product life expressed above is based on average usage and normal operating conditions. Actual operating life will vary with conditions. The above statements are not intended to, nor shall they create any expressed or implied warranties as to product operation or life. For information on the listed warranty offered on this product, refer to the Square D terms and conditions of sale found in the Square D Digest.		
(1) Replaces ca		

CA2KN40••

CA2KN403••

CA3KN407••

CA4KN405•••

Application Data.
Dimensions.
Contact Configuration.
Accessories

Control Relays

- Mounting on 35 mm DIN3 track or 4 screw direct mounting.
- Screws in open "ready-to-tighten" position.

Control Circuit		Type of Termination	Contact Configuration		Catalog Number *	Weight lb (kg)	
			4				
Supply	Consumption		N/O	N/C			
AC	4.5 VA		Screw clamp	4	0	CA2KN40••	0.40 (0.180)
		3		1	CA2KN31••	0.40 (0.180)	
		2		2	CA2KN22••	0.40 (0.180)	
		Spring Termination	4	0	CA2KN403.0	0.40 (0.180)	
			3	1	CA2KN313.0	0.40 (0.180)	
			2	2	CA2KN223.0	0.40 (0.180)	
		Faston 1×6.35 or 2×2.8	4	0	CA2KN407••	0.40 (0.180)	
			3	1	CA2KN317••	0.40 (0.180)	
			2	2	CA2KN227••	0.40 (0.180)	
		Solder pins for printed circuit board	4	0	CA2KN405••	0.46 (0.210)	
			3	1	CA2KN315••	0.46 (0.210)	
			2	2	CA2KN225••	0.46 (0.210)	
DC	3 W	Screw clamp	4	0	CA3KN40••	0.50 (0.225)	
			3	1	CA3KN31••	0.50 (0.225)	
			2	2	CA3KN22••	0.50 (0.225)	
		Spring Termination	4	0	CA3KN403.0	0.50 (0.225)	
			3	1	CA3KN313.0	0.50 (0.225)	
			2	2	CA3KN223.0	0.50 (0.225)	
		Faston 1×6.35 or 2×2.8	4	0	CA3KN407••	0.50 (0.225)	
			3	1	CA3KN317••	0.50 (0.225)	
			2	2	CA3KN227••	0.50 (0.225)	
		Solder pins for printed circuit board	4	0	CA3KN405••	0.56 (0.255)	
			3	1	CA3KN315••	0.56 (0.255)	
			2	2	CA3KN225••	0.56 (0.255)	

Low Consumption Control Relays

- Compatible with programmable controller outputs.

Compatible with programma
LED indicator incorporated.
Wide range coil (70 to 130% Uc), suppressor fitted as standar
Mounting on 35 mm DIN3 track or 4 screw direct mounting.
Screws in open "ready-to-tighten" position.

DC	1.8 W	Screw clamp	4	0	CA4KN40•••	0.52 (0.235)
			3	1	CA4KN31**•	0.52 (0.235)
			2	2	CA4KN22•••	0.52 (0.235)
		Spring Termination	4	0	CA4KN403•••	0.52 (0.235)
			3	1	CA4KN313-••	0.52 (0.235)
			2	2	CA4KN223-*•	0.52 (0.235)
		$\begin{aligned} & \text { Faston } \\ & 1 \times 6.35 \\ & \text { or } 2 \times 2.8 \end{aligned}$	4	0	CA4KN407•••	0.52 (0.235)
			3	1	CA4KN317•••	0.52 (0.235)
			2	2	CA4KN227•••	0.52 (0.235)
		Solder pins for printed circuit board	4	0	CA4KN405•••	0.58 (0.265)
			3	1	CA4KN315•••	0.58 (0.265)
			2	2	CA4KN225•••	0.58 (0.265)

[^1]
IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line

K-Line Ordering Informaiton
Clip-on Front Mounting, 1 Block Per Control Relay

LA1KN40

LA1KN403

LA1KN407

Type of connection	Contact Configuration		Catalog Number	Weight lb (kg)
		4		
	N/O	N/C		
Screw clamp	2	0	LA1KN20	0.10 (0.045)
	0	2	LA1KN02	0.10 (0.045)
	1	1	LA1KN11	0.10 (0.045)
	4	0	LA1KN40 A	0.10 (0.045)
	3	1	LA1KN31 A	0.10 (0.045)
	2	2	LA1KN22 A	0.10 (0.045)
	1	3	LA1KN13 A	0.10 (0.045)
	0	4	LA1KN04 A	0.10 (0.045)
Spring Termination	2	0	LA1KN203	0.10 (0.045)
	1	1	LA1KN113	0.10 (0/045)
	0	2	LA1KN023	0.10 (0.045)
	4	0	LA1KN403 ${ }^{\text {a }}$	0.10 (0.045)
	3	1	LA1KN313 A	0.10 (0.045)
	2	2	LA1KN223 ${ }^{\text {a }}$	0.10 (0.045)
	1	3	LA1KN133 ${ }^{\text {a }}$	0.10 (0.045)
	0	4	LA1KN043 ©	0.10 (0.045)
$\begin{aligned} & \text { Faston } \\ & 1 \times 6.35 \\ & \text { or } 2 \times 2.8 \end{aligned}$	2	0	LA1KN207	0.10 (0.045)
	0	2	LA1KN027	0.10 (0.045)
	1	1	LA1KN117	0.10 (0.045)
	4	0	LA1KN407 A	0.10 (0.045)
	3	1	LA1KN317 A	0.10 (0.045)
	2	2	LA1KN227 ${ }^{\text {A }}$	0.10 (0.045)
	1	3	LA1KN137 A	0.10 (0.045)
	0	4	LA1KN047 ©	0.10 (0.045)

Electronic Time Delay Attachment

- Relay output with common point changeover contact, 240 VAC or VDC, 2 A maximum.
- Control voltage: 85 to 110% Uc.
- Maximum switching capacity: 250 VA or 150 W .
- Operating temperature: 14 to $140^{\circ} \mathrm{F}\left(-10\right.$ to $\left.60^{\circ}\right)$.
- Reset time: 1.5 s during the time delay period, 0.5 s atter the time delay period.

Clip-on Front Mounting, 1 Block per Control Relay					
Voltage	Type	Timing Range (s)	Contact Configuration	Catalog Number	Weight lb (kg)
24 to 48 Vac or Vdc	On-delay	1 to 30	$1 \mathrm{~N} / \mathrm{O}$ and $1 \mathrm{~N} / \mathrm{C}$ with a common	LA2KT2E	0.09 (0.040)
110 to 240 Vac	On-delay	1 to 30	$1 \mathrm{~N} / \mathrm{O}$ and $1 \mathrm{~N} / \mathrm{C}$ with a common	LA2KT2U	0.09 (0.040)

Coil Voltages

CA2K Control Relays

Volts ac $50 / 60 \mathrm{~Hz}$		12	20	24	36	42	48	110	115	120	127	220/230	230	230/240	380/400	400	400/415	440	480	500	600	660/690
Code (85 to 110\% Uc)		J7	Z7	B7	C7	D7	E7	F7	FE7	G7	FC7		P7			V7		R7	T7	S7	X7	
Code (80 to 115\% Uc)												M7		U7	Q7		N7					Y7
Coils up through 240 V are available with built-in coil suppression. Add a $\mathbf{2}$ to the end of the appropriate voltage code. Example:G72.																						
CA3K Control Relays (80 to 115\% Uc)																						
Volts dc	12	20			36		48		60		72	100	110		125	200	220	230		240		250
Code	JD				CD		ED		ND		S	KD	FD		GD	LD	MD			MUD		UD
Coils are available with built-in coil suppression. Add a 3 to the end of the appropriate voltage code. Example: JD3.																						
CA4K Low Consumption Control Relays (wide range coil: 70 to 130\% Uc)																						
Relays......... Application Data Dimensions		... 13		Volts dc			12			20		24		48		72		110			120	
				Code			JW3		ZW3			BW3		EW3		SW3		FW3		GW3		

Dimensions.
.16

14

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line

 K-Line Ordering Informaiton

LA9D973

LA4K•••

Description	Application		Sold in Lots of	Catalog Number	Weight lb (kg)
Mounting Plates for Fixing	On 1 DIN1 track	Clip-on fixing	1	LA9D973	0.06 (0.025)
	On 2 DIN1 tracks	110/120 mm fixing centers	1	DX1AP25	0.14 (0.065)
Marker Holder	Clips onto Front of Relay		100	LA9D90	0.002 (0.001)
Clip-in Markers	See page 22				
Suppressor Modules Incorporating LED Indicator	Clips onto front of relay, with orientation device. No tools required for connection.	For ac and dc voltages 12 to 24 V (varistor)	5	LA4KE1B \triangle	0.02 (0.010)
		For ac and dc voltages 32 to 48 V (varistor)	5	LA4KE1E \triangle	0.02 (0.010)
		For ac and dc voltages 50 to 129 V (varistor)	5	LA4KE1FC \triangle	0.02 (0.010)
		For ac and dc voltages $130 \text { to } 250 \mathrm{~V}$	5	LA4KE1UG \triangle	0.02 (0.010)
		For dc voltages 12 to 24 V (diode + Zener diode)	5	LA4KC1B *	0.02 (0.010)
		For dc voltages 32 to 48 V (diode + Zener diode)	5	LA4KC1E *	0.02 (0.010)
		For ac voltages 220 to 250 V (RC)	5	LA4KA1U ${ }^{\text {P }}$	0.02 (0.010)

- Protection by limitation of the transient voltage to 2 Uc maximum.

Maximum reduction of the transient voltage peaks.
Slight time delay on drop-out (1.1 to 1.5 times normal)

* No over voltage or oscillation frequency. Polarized component.
Slight time delay on drop-out (1.1 to 1.5 times normal).
D Protection by limitation of the transient voltage to 3 Uc max. and limitation of the oscillation frequency Slight time delay on drop-out (1.2 times to 2 times normal)

On AM1DP200 or AM1DE200 Track (35 mm DIN3)

LA2KT Electronic Time Delay Contact Blocks

CA2, CA3, CA4K Control Relays
$4 \mathrm{~N} / \mathrm{O} \quad 3 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C} \quad 2 \mathrm{~N} / \mathrm{O}+2 \mathrm{~N} / \mathrm{C} \quad$ CA4K• Coil (suppressor scheme)

LA1K Instantaneous Auxiliary Contact Blocks

LA2KT Electronic time Delay Contact Blocks
For CA2, CA3, CA4K
$1 \mathrm{C} / \mathrm{O}$

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line K-Line Application Data

Environment

A Very low safety voltage.

- Contact your local field sales office.

Control Circuit Characteristics

Type			CA2K	CA3K	CA4K
Rated Control Circuit Voltage (Uc)		V	12 to 690 ac	12 to 250 dc	12 to 72 dc
Control Voltage Limits $122{ }^{\circ} \mathrm{F}$ ($\leq 50^{\circ} \mathrm{C}$) single voltage coil	For operation		80 to 115% Uc	80 to 115\% Uc	70 to 130% U
	For drop-out		$\leq 20 \%$ Uc	$\leq 10 \%$ Uc	$\leq 10 \%$ Uc
Average Consumption at $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ and at Uc	Inrush		30 VA	3 W	1.8 W
	Sealed		4.5 VA	3 W	1.8 W
Heat Dissipation		W	1.3	3	1.8
Operating Time at $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ and at Uc	Between coil energization and - opening of the N/C contacts - closing of the N/O contacts ms ms	ms ms	$\begin{aligned} & 5 \text { to } 15 \\ & 10 \text { to } 20 \end{aligned}$	$\begin{aligned} & 25 \text { to } 35 \\ & 30 \text { to } 40 \end{aligned}$	$\begin{array}{\|l} 25 \text { to } 35 \\ 30 \text { to } 40 \end{array}$
	Between coil de-energization and - opening of the N/O contacts - closing of the N/C contacts	ms ms	$\begin{aligned} & 10 \text { to } 20 \\ & 15 \text { to } 25 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 10 \text { to } 20 \\ & 15 \text { to } 25 \end{aligned}$
Maximum Immunity to Micro Breaks		ms	2	2	2
Maximum Operating Rate	In operating cycles per hour		10,000	10,000	6000
Mechanical Durability at Uc In millions of operating cycles	$50 / 60 \mathrm{~Hz}$ coil		10	-	-
	Standard dc coil		-	20	-
	Wide range dc coil		-	-	30

The product life expressed above is based on average usage and normal operating conditions. Actual operating life will vary with conditions. The above statements are not intended to, nor shall they create any expressed or implied warranties as to product operation or life. For information on the listed warranty offered on this product, refer to the Square D terms and conditions of sale found in the Square D Digest.

04/01

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line

K-Line Application Data

Contact Characteristics of Control Relays and Instantaneous Contact Blocks

Operational Power of Contacts

Conforming to IEC 60947-1-1

1 million operating cycles

3 million operating cycles
10 million operating cycles
Occasional making capacity
1 Breaking limit of contacts valid for: - maximum of 50 operating cycles at 10 s intervals (breaking current $=$ making current $\mathrm{x} \cos \varphi 0.7$).

2 Electrical durability of contacts for: 1 million operating cycles (2a) -3 million operating cycles (2b) 10 million operating cycles (2c).

3 Breaking limit of contacts valid for: maximum of 20 operating cycles at 10 s intervals with current passing for 0.5 s per operating cycle.

4 Thermal limit

AC Supply, Category AC-15							
Electrical durability (valid up to 3600 operating cycles per hour on an inductive load such as the coil of an electromagnet: making current $(\cos \varphi 0.7)=10$ times breaking current $(\cos \varphi 0.4)$.							
			110/	220/	380/		600/
V	24	48	127	230	400	440	690
VA	48	96	240	440	800	880	1200
VA	17	34	86	158	288	317	500
VA	7	14	36	66	120	132	200
VA	1000	2050	5000	10000	14000	130	9000

DC Supply, Category DC-13
Electrical durability (valid up to 1200 operating cycles per hour on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

V	24	48	110	220	440	600
W	120	80	60	52	51	50
W	55	38	30	28	26	25
W	15	11	9	8	7	6
W	720	600	400	300	230	200

The product life expressed above is based on average usage and normal operating conditions. Actual operating life will vary with conditions. The above statements are not intended to, nor shall they create any expressed or implied warranties as to product operation or life. For information on the listed warranty offered on this product, refer to the Square D terms and conditions of sale found in the Square D Digest.

Utilization Categories for Control Relays Conforming to IEC 60947-1-1

AC Applications	Category AC-15 (1)	This category applies to the switching of electromagnetic loads whose power drawn with the electromagnet closed is more than 72 VA. Application example: Switching the operating coil of contactors.
DC Applications	Category DC-13 (2)	This category applies to the switching of electromagnetic loads for which the time taken to reach 95% of the steady state current (T $=$ $0.95)$ is equal to 6 times the power P drawn by the load (with $\mathrm{P} \geq 50 \mathrm{~W})$. Application example: Switching the operating coil of contactors without economy resistor.
(1) Replaces category AC-11		

[^2]

CAZSK11G7

LA1SK11

LA4SKE1U

- Miniature size saves space - Mounts on 35 mm DIN3 track or can be mounted directly to a panel - Up to 4 poles						
Control Circuit Supply	Consumption	Type of Termination			Catalog Number	Weight lb (kg)
			N/O	N/C		
AC	4.2 VA	Screw clamp	1	1	CA2SK11	0.24 (0.109)
			2	0	CA2SK20 A	0.24 (0.109)
DC	2.2 W	Screw clamp	1	1	CA3SK11	0.24 (0.109)
			2	0	CA3SK20 4	0.24 (0.109)

Contact Adder Decks

Used to expand the CA2SK20 two pole relays to a four pole relay.				
Type of Termination	Contact Configuration		Catalog Number	Weight lb (kg)
		4		
	N/O	N/C		
Screw clamp	2	0	LA1SK20	0.05 (0.022)
	1	1	LA1SK11	0.05 (0.022)
	0	2	LA1SK02	0.05 (0.022)

Transient suppressor module
Dampens the voltage spike that may occur when the relay coil is de-energized. The spike may adversely affect solid state equipment near the relay. The transient suppressor module snaps into a cavity located in the side of the relay. These modules can be used with CA2SK and CA3SK relays.

Control Circuit Voltage	Catalog Number	Weight lb (kg)
$24-48 \mathrm{~V} 50 / 60 \mathrm{~Hz} 24-48 \mathrm{Vdc}$	LA4SKE1E	$0.02(0.010)$
$110-250 \mathrm{~V} 50 / 60 \mathrm{~Hz} \mathrm{110-250} \mathrm{Vdc}$	LA4SKE1U	$0.02(0.010)$

Coil Voltage Codes

Voltage	12	24	36	48	110	120	220	230	240	380	400	480
$50 / 60$ Hz (CA2SK relays)	-	B7	-	E7	F7	G7	M7	P7	U7	Q7	V7	T7
DC (CA3SK relays)	JD	-	CD	ED	SD	-	-	-	-	-	-	-

- Add proper voltage code to the end of the catalog number.

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line SK-Line Ordering Information

Environment

Type			CA2	CA3
Conforming to Standards			IEC337-1, 947-1, 947-5, NF C63-140, VDE0660, BS4794 UL Listed File E164353 CCN NKCR, CSA File LR12721 Class 3211 03, SEMKO, SEV, DEMKO, CE	
Approvals			${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	-4 to 131 (-20 to 55)
Operating Temperature Range		AWG $\left(\mathrm{mm}^{2}\right)$	Two \#20 (0.75) to \#16 (1.5)	
Wire Range	Stranded wire	AWG $\left(\mathrm{mm}^{2}\right)$	Two \#18 (1) to \#14 (2.5)	
	Solid wire			

Control circuit characteristics

Type			CA2	CA3
Rated Insulation Voltage	$\begin{aligned} & \text { Conforming to UL508 } \\ & \text { Conforming to VDE } 0110 \text { Group C } \end{aligned}$	$\begin{array}{\|l} \hline V \\ V \end{array}$	$\begin{array}{\|l\|} \hline 600 \\ 660 \end{array}$	$\begin{array}{\|l\|} \hline 600 \\ 660 \\ \hline \end{array}$
Rated Coil Voltage Uc		V	24 to 600	12 to 220
Permissible Voltage Variation			+10/-20\% Uc	
Average Consumption	Inrush		15.5 VA	2.2 W
	Sealed		4.2 VA	2.2 W
Operating Time	Pick-up	ms	8 to 16	10 to 18
	Drop-out	ms	6 to 8	4 to 6
Mechanical Life	In millions of operations		10	10

Contact Ratings

AC								DC	
Volts	Inductive 35\% PF						Resistive 75\% PF	Volts	Continuous Amps
	UL Rating	Make		Break		Continuous Amps	Make, Break \& Cont. Amps		
		Amps	VA	Amps	VA				
120	A600	60	7200	6	720	10	10	24	3
240		30	7200	3	720	10	10	60	2
480		15	7200	1.5	720	10	10	110	0.8
600		12	7200	1.2	720	10	10	240	0.2

Approximate dimensions

Contact Configurations

$\left.\begin{array}{llll}\hline \text { Mounting Track } & & \text { Catalog Number } \\ \text { Description } & \text { Length } & \begin{array}{l}\text { Class 9080 } \\ \text { Type MH... }\end{array} & \begin{array}{l}\text { Std. } \\ \text { Pack }\end{array} \\ \hline & & 0.08 \mathrm{~m} / 3^{\prime \prime} & 9080 \text { MH203 }\end{array}\right]$
$\left.\begin{array}{llll}\begin{array}{l}\text { Mounting Track } \\ \text { Description }\end{array} & \text { Catalog Number } & \begin{array}{l}\text { Weight } \\ \text { Std. } \\ \text { Pack }\end{array} \\ \hline \text { DIN3 } \\ \text { (kg) }\end{array}\right)$

Angle bracket kit

For mounting 9080 GH or MH track to
a panel at 45° angle. Includes 2
brackets and hardware for mounting
the track to the brackets.
End Clamps
Metal end clamp for 35 mm DIN 3 track, $8 \mathrm{~mm}\left(0.311^{\prime \prime}\right)$ wide

AM1DP200

DZ5MB201
mm

硅
m

inches
\qquad

Clip-in Marker Strips \boldsymbol{A}

| 10 Identical Numbers
 (or symbols) | 10 Numbers 0 to 9 | 10 Identical Letters | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| AB1R•• | AB1R11 | AB1G• | AB1G• |

Marking Components

Holder for 6 Markers	Blank Clip-in Marker		Clip-in Marker with Earth Symbol \quad -	
AB1SR6	AB1SAI		AB1RT	
Sold in Lots of 200	Sold in Lots of 500		Sold in Lots of 500	
Unit Weight: 0.6 g	Unit Weight: 0.3 g (AB1SA1,SA2) 0.4 g (AB1SA3)		Unit Weight: 0.3 g	
	Size	Unit	Size	Unit
	mm	Reference	mm	Reference
	4.5×8.3	AB1SA1	4.5×8.3	AB1RT
Holder for up to 6 AB1R or G markers	4.5×14	AB1SA2	-	-
	4.5×19	AB1SA3	-	-

A Can also be used on other Telemecanique products such as GV1 thermal-magnetic circuit breakers, modular contractors, "D" range contactors, "K" range contactors, etc.

- Black on white background

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line TeSys and K-Line Relay Protective Treatment

In order to make the correct choice of protective treatment, two points should be remembered:

1. The prevailing climate of the country is never the only criterion.
2. Only the ambient conditions in the immediate vicinity of the equipment need be considered.

TH Treatment — Standard Treatment

The TeSys and K-Line relay are TH treated as standard, and because of this can be used in particularly severe conditions such as:

- hot and humid atmospheres with prevailing heavy condensation,
- dripping water and fungi.

Insulating parts use plastic materials which resist attack from insects (termites, beetles...)
These qualities have led to this treatment being called Tropical Finish.

Characteristics

Steel parts are usually chrome galvanized or chrome galvanized or chrome cadmium plated; when the item has a mechanical function it can also be painted.

Parts with an insulating function are manufactured in a material with improved leakage resistance, (standards IEC 112, NFC 26-220, DIN 53480) and are treated to be fungus resistant.
Metallic enclosures are given a baked enamel finish, applied over a protective phosphatizing coat.
TH treatment is suitable for the most severe climatic conditions and conforms to the following standards:
UTE Publication C 63-100 (treatment II)
12 successive humid heat cycles at:
$+40^{\circ} \mathrm{C} / 104^{\circ} \mathrm{F}$ temperature and 95% relative humidity
+48 hours of salt spray
Standards DIN 50015-50016, alternating environmental chamber conditions:
$+23^{\circ} \mathrm{C} / 73^{\circ} \mathrm{F}$ temperature and 83% relative humidity
$+40^{\circ} \mathrm{C} / 104^{\circ} \mathrm{F}$ temperature and 92% relative humidity.

Utilization Limits

TH treatment can be used in the following temperature and humidity conditions:
Temperature from +20 to $+40^{\circ} \mathrm{C} /+68$ to $+104^{\circ} \mathrm{F}$ with a relative humidity which can reach 95%.

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line Long Distance Control Data

Voltage Drop Caused by the Inrush Current

When the operating coil of a relay is energized, the inrush current produces a voltage drop in the control supply cable caused by the resistance of the
conductors, which can adversely affect closing of the relay.
An excessive voltage drop in the control supply cables (both a.c. and d.c.) can lead to non closure of the relay poles or even destruction of the coil due to overheating
This phenomenon is aggravated by:

- a long line,
a low control circuit voltage,
a cable with a small cross-sectional area (c.s.a.)
- a high inrush power drawn by the coil.

The maximum length of cable, depending on the control voltage, the inrush power and the conductor c.s.a. is indicated in the graphs below.

Remedial Action

To reduce the voltage drop at switch-on
increase the conductor c.s.a
use a higher control circuit voltage
use an intermediate control relay
Selection of Conductor c.s.a.
These graphs are for a maximum line voltage drop of 5%. They give a direct indication of the copper conductor c.s.a. to be used for the control circuit cable, depending on its length, the inrush power drawn by the relay coil and the control circuit voltage (see example page 25)

$\mathbf{1 2 4}$ Vac	$\mathbf{3 1 1 5}$ Vac	$\mathbf{5 4 0 0} \mathrm{V}$
$\mathbf{2 4 8}$ Vac	$\mathbf{4 2 3 0}$ Vac	$\mathbf{6} 690 \mathrm{Vac}$

Size of Copper Wires

A \# 20 AWG (0.75 mm$) ~$	C \# 16 AWG $\left(1.5 \mathrm{~mm}^{2}\right)$	E \# 12 AWG $\left(4 \mathrm{~mm}^{2}\right)$
B \# 18 AWG (1 mm $\left.{ }^{2}\right)$	D \# 14 AWG $\left(2.5 \mathrm{~mm}^{2}\right)$	F \# 10 AWG $\left(6 \mathrm{~mm}^{2}\right)$

Total resistance of the 2 conductors of the control circuit in Ω (1)

$\mathbf{7 2 4} \mathrm{Vdc}$	$\mathbf{9} 125 \mathrm{Vdc}$
$\mathbf{8 4 8} \mathrm{Vdc}$	$\mathbf{1 0 c} 250 \mathrm{Vdc}$

Size of Copper Wires
A \# 20 AWG $\left(0.75 \mathrm{~mm}^{2}\right)$
C \# 16 AWG $\left(1.5 \mathrm{~mm}^{2}\right)$
B \# 18 AWG 12 AWG $\left(4 \mathrm{~mm}^{2}\right)$

1) For 3-wire control, the current only flows in 2 of the conductors
(2) This is the length of the cable comprising 2 or 3 conductors (Distance between the relay and the control device).

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line Long Distance Control Data

Voltage Drop Caused by the Inrush Current (continued)

What cable c.s.a. is required for the control circuit of an CAD50G7 relay, operated from a distance of 500 meters.
CAD50G7, voltage 120 V, 60 Hz: inrush power: 70 VA
On the left-hand graph on page 24 , point X is at the intersection of the vertical line corresponding to 70 VA and the a 120 V (estimated) voltage curve On the right-hand graph on page 24 point Y is at the intersection of the vertical line corresponding to 500 m and the horizontal line passing through point X

Use the conductor c.s.a. indicated by the curve which passes through point Y, between \# 14 and \# 16 AWG.
If point Y lies between two c.s.a. curves, choose the larger of the c.s.a. values. In this case \# 14 AWG.

Calculating the maximum cable length

The maximum permissible length for acceptable line voltage drop is calculated by the formula:
$L=\frac{U^{2}}{S A} \mathrm{~s} . \mathrm{K}$.
Where:
L : distance between the contactor and the control device in m , (length of the cable),
U : supply voltage in V ,
SA: apparent inrush power drawn by the coil in VA, (Vac) or W (Vdc)
s : conductor c.s.a. in mm^{2},
K: factor given in the table below

a.c. supply	SA in VA	20	40	100	150	20
	K	1.38	1.5	1.8	2	
d.c. supply	Irrespective of the inrush power SA, expressed in W					

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line Long Distance Control Data

Residual Current in the Coil Due to Cable Capacitance

When the control contact of a relay is opened the cable capacitance is effectively in series with the coil of the electromagnet. This capacitance can cause a residual current to be maintained in the coil, with the risk that the relay will remain closed.

This only applies to relays operating on an a.c. supply.
This phenomenon is aggravated by

- a long line length between the coil control contact and the relay, or between the coil control contact and the power supply,
- a high control circuit voltage,
- a low coil consumption, sealed
- a low value of relay drop-out voltage.

The maximum control cable length, according to the relay coil supply voltage, is indicated in the graph on page 27.

Remedial action

Various solutions can be adopted to avoid the risk of the contactor remaining closed due to cable capacitance:
use a d.c. control voltage, or

- add a rectifier, connected as shown in the scheme below, but retaining an a.c. operating coil: in this way, rectified a.c. current flows in the control circuit cable.

When calculating the maximum cable length, take the resistance of the conductors into account.

- Connect a resistor in parallel with the contactor coil (1).

Value of the resistance:
$R \Omega=\frac{1}{10^{-3} C(u F)}$ (C capacitance of the control cable)

Power to be dissipated

$$
P W=\frac{U^{2}}{R}
$$

(1) To avoid increasing the voltage drop due to inrush current, this resistor must be brought into operation after the relay has closed by using a N/O contact.

IEC Type Industrial Control Relays; TeSys D-Line, K-Line, and SK-Line
 Long Distance Control Data

Residual Current in the Coil due to Cable Capacitance (continued)
These graphs are for a capacitance, between conductors, of $0.2 \mu \mathrm{~F} / \mathrm{km}$. They make it possible to determine whether there is a risk of the contactor remaining closed due to the power drawn by the coil when sealed and the control circuit voltage, according to the length of the control cable.

Power drawn, sealed in VA

$\mathbf{1 2 4 ~ V a c}$	4230 Vac		
248 Vac	5400 Vac		-wire control 3115 Vac

In the zones below the straight lines for 3 -wire and 2-wire control respectively, there is a risk of the relay remaining closed.
Examples
What is the maximum length for the control cable of a CAD50 relay, operating on 230 V , with 2-wire control?

- CAD50 relay, voltage $230 \mathrm{~V}, 60 \mathrm{~Hz}$: power sealed 8 VA .

On the left-hand graph, point A is at the intersection of the vertical line for 8 VA with the a 230 V voltage curve.
On the right-hand graph, point B is at the intersection of the horizontal line with the 2 -wire control curve.
The maximum cable length is therefore 300 m .
In the same example, with a 600 m cable, the point lies in the risk zone. A resistor must therefore be connected in parallel with the relay coil.
Using right hand table above, find 600 meter along the bottom and follow up to line B (2 wire control) and then to the left to obtain C value.
Value of this resistance:

$$
\mathrm{R}=\frac{1}{10^{-3} \times C}=\frac{1}{10^{-3} \times 0.12}=8.3 \mathrm{k} \Omega
$$

Power to be dissipated:
$P=\frac{U^{2}}{R}=\frac{(230)^{2}}{8300}=(6.5) \mathrm{W}$
Alternative solution: use a d.c. control supply.
Calculating the Cable Length
The maximum permitted length of control cable to avoid the effects of capacitance is calculated using the formula:

$$
L=455 \times \frac{S}{\mathrm{U}^{2} \times \mathrm{Co}}
$$

L : distance between the contactor and the control device in km (length of the cable),
S: apparent power, sealed, in VA,
U : control voltage in V
Co: cable capacitance in $\mu \mathrm{F} / \mathrm{km}$. (to be supplied by wire manufacturer for type of wire used)

Square D Company
8001 Highway 64 East
Knightdale, NC 27545
1-888-SquareD
(1-888-778-2733)
www.SquareD.com

Schneider Canada Inc. 19 Waterman Avenue, M4B 1 Y2
Toronto, Ontario
1-800-565-6699
www.schneider-electric.ca Catalog No. 8501CT0101 April 2001 © 2001 Schneider Electric All Rights Reserved

[^0]: * Grounding terminal points (2 terminals jumpered together; see diagram on page 8).
 + Auxiliary contact blocks with four contacts cannot be used on relays with low consumption coils.
 - Add proper voltage code to end of catalog number.
 - Includes $1 \mathrm{~N} / \mathrm{O}$ and $1 \mathrm{~N} / \mathrm{C}$ overlapping contact.
 * For ring terminal configuration add " 6 " before coil voltage suffix. For example CAD32B7 becomes CAD326B7.

[^1]: - Complete catalog number by adding proper voltage code from page 14.

[^2]: (1) Replaces category AC-11
 (2) Replaces category DC-13

