Catalogue 2019
Circuit breakers and switch-disconnectors from 630b to 3200 A

Green Premium ${ }^{\text {m }}$

Endorsing eco-friendly products in the industry

Green Premium ${ }^{\prime \prime}$

Product
Green Premium is the only label that allows you to effectively develop and promote an environmental policy whilst preserving your business efficiency. This ecolabel guarantees compliance with up-to-date environmental regulations, but it does more than this.

Over 75\% of Schneider Electric manufactured products have been awarded the Green Premium ecolabel

Discover what we mean by green.

Check your products!

Schneider Electric's Green Premium ecolabel is

 committed to offering transparency, by disclosing extensive and reliable information related to the environmental impact of its products:
RoHS

Schneider Electric products are subject to RoHS requirements at a worldwide level, even for the many products that are not required to comply with the terms of the regulation. Compliance certificates are available for products that fulfil the criteria of this European initiative, which aims to eliminate hazardous substances.

REACh

Schneider Electric applies the strict REACh regulation on its products at a worldwide level, and discloses extensive information concerning the presence of SVHC (Substances of Very High Concern) in all of its products.

PEP: Product Environmental Profile

Schneider Electric publishes complete set of environmental data, including carbon footprint and energy consumption data for each of the lifecycle phases on all of its products, in compliance with the ISO 14025 PEP ecopassport program. PEP is especially useful for monitoring, controlling, saving energy, and/or reducing carbon emissions.

EoLI: End of Life Instructions

Available at the click of a button, these instructions provide:

- Recyclability rates for Schneider Electric products.
- Guidance to mitigate personnel hazards during the dismantling of products and before recycling operations.
- Parts identification for recycling or for selective treatment, to mitigate environmental hazards/ incompatibility with standard recycling processes.

ComPact NS

Molded case circuit breakers

The world is becoming more electric, digitized and decarbonized. Our digitized LV products are powered by innovation at every level enabling enhanced connectivity, real-time operations and smart analytics. They bring improved safety and security. They help you to improve reliability and performance - and to prepare for the future of power distribution.
ComPact is an integral part of EcoStruxure ${ }^{\text {TM }}$ Power - Schneider's open, interoperable, IoT-enabled system architecture. Through this platform, we deliver enhanced value around safety, reliability, efficiency, sustainability, and connectivity for our customers. We leverage technologies in loT, mobility, sensing, cloud, analytics, and cybersecurity to deliver Innovation at Every Level. This includes Connected Products, Edge Control, and Apps, Analytics \& Services. EcoStruxure has been deployed in 450,000+ installations, with the support of 9,000 system integrators, connecting over 1 billion devices.

The launch of Schneider Electric ComPact NS in 1994 revolutionized the world of molded case circuit breakers and benefits from 60 years of experience and leadership in industrial circuit breakers.
As well as offering proven performance, flexibility and reliability, the ComPact NS sets the standard in most applications: buildings, windturbine, solar, genset, data center, healthcare, marine and infrastructure and decrease your energy consumption thanks to very low power dissipation.
Equipped with the Micrologic control units, ComPact NS630b to 3200 A circuit breakers offer built-in power and energy metering in addition to electrical measurement and analysis functions.

The communication option makes it possible to control power consumption, simplify maintenance and improve operating comfort.

A wide range of optimized auxiliaries and accessories is available to meet the needs of protection of AC installations, generator protection, motor protection, switch-disconnectors, source changeover switch function and specific offers available for DC applications up to 1000 V .

Today, the ComPact NS range remains the international reference in the molded-case, circuit breaker market.

I design electrical solutions

More than 10 years of long-felt techniques and technologies ahead quite simple and convenient.

The ComPact NS range covers all ratings from 630 to 3200 A

ComPact NS630b to 1600

- ComPact NS from 630 to 1600 A, fixed or withdrawable, front or rear connection, manual operating mechanism or motor mechanism. A 200 kA breaking performance completes the ComPact NS range

ComPact NS1600b to 3200
 ComPact NS1600b to 3200

- ComPact NS from 1600 to 3200 A, fixed, front connection, with manual operating mechanism

ComPact NSXm/NSX
> ComPact INS/INV

LVPED213024EN
> Source-changeover systems
> Complementary technical information

LVPED216026EN

LVPED217032EN

LVPED216028EN

LVPED308005EN

Manually operated device.

Electrically operated device.

Withdrawable device.

Optimize your solution

- Minimum distances (safety clearance) between 2 circuit breakers are reduced thanks to the arc chute filters.
- A solution for all your applications:
- generator protection
- motor protection up to 750 kW with coordination between breakers and contactors (coordination type 1 and type 2)
- source-changeover.
- Best combination of size (small depth), performance with no derating up to $65^{\circ} \mathrm{C}$ (vertical connection) and flexible mounting options.
- Ensure continuity of service:
- Total control of selectivity for the whole Schneider Electric circuit breakers range from moulded circuit breaker to air circuit breaker
- High withstand of the devices to various envrionmental stresses.
- Bring flexibility to your installation:

Interchangeable trip units, standardized accessories, adjustable rating and scalable indication and control functions.

I operate and manage my installation

Ensure continuity of service

- Electrical energy is available, prevent nuisance power outages using total control of selectivity.

Monitor your power

- Power consumption is optimized with on-site, real-time monitoring and control, plus online energy management services
- Maintenance is simplified
- Installation is scalable
- Using ComPact NS will decrease permanent consumption with lower power dissipations.

Architecture overview

Ethernet-ready Smart Panels

Ethernet-ready Smart Panels enable electrical distribution control and expertise. 'Protect' - 'Measure' - 'Connect' are the 3 pillars of their technology.

Architecture overview

Future savings, peace-of-mind

Access to Smart Panel status, values, is essential for taking advantages of monitoring and management services, locally or remotely.

Act in small/medium buildings
 with FDM 128, Com’X 510, Power View, EcoStruxure ${ }^{\text {TM }}$ Facility Expert

Optimizing energy-efficiency

- Visualize, record energy consumption and WAGES.
- Comply with regulation .

Electrical device monitoring and control with FDM 128, locally

Improving continuity of service

- Get instant notifications
- Manage with assets-maintenance platform
- Get and analyze data for quick crisis-recovery

Com'X 510 web pages direct display, or Cloud based pages from other devices with Power View.

Increasing maintenance efficiency

- Operate preventive maintenance tools
- Follow maintenance \& planning
- Provide business owner instant access to maintenance reports

Distance management with EcoStruxure ${ }^{\mathrm{TM}}$
Facility Expert on Smartphone, tablet, PC

Architecture overview

Day-to-day energy management >> Power availability \& quality, energy performance
 For simply dealing with building user's needs and energy constraints.
 EcoStruxure ${ }^{\text {TM }}$ Building Management provides electrical management, monitoring and energy accounting.
 Energy decisions are often crucial in large critical buildings, they must be informed.
 EcoStruxure ${ }^{\text {TM }}$ Power Monitoring Expert (software for PC) collects Smart Panels values to provide expert analysis.

Act in large non-critical buildings with EcoStruxure ${ }^{T M}$ Energy Expert

Managing equipment \& key assets

- Check operating status, faults on custom on-line diagrams.

Monitoring electrical network

- Observe voltage disturbances, harmonics on graphics.
- Read power factor.

Ф

Accounting energy

- Record power meter data on dashboards.
- Allocate energy consumption with costs.
- Follow conservation goals.

Act in large critical buildings
 with EcoStruxure ${ }^{\text {TM }}$ Power Monitoring Expert ${ }^{(1)}$

Monitoring Power quality

- Be alerted of equipment affected by power quality issue.
- Compare power quality against industry standards.
- Collect facts for future discussion with Utility.

Analysing Energy Performance

- Evaluate building energy saving performance;
- Identify underperforming loads;
- Analyze Energy Conservation Measures (ECMs) according ISO50001 program.
[1] EcoStruxure ${ }^{\text {TM }}$ Power Monitoring Expert, http://pmedemo.biz/web/ ID: demo \& Password: demo

ComPact NS630b to 3200

Functions and characteristics
Installation recommendations B
Dimensions and connectionC
Electrical diagramsD
Additional characteristics
E
Catalogue numbers and order formF

ComPact NS, even more applications.

Protection of LV distribution systems
> pages $\mathrm{A}-2$ et $\mathrm{A}-25$

Protection for:

- distribution systems supplied by
transformers
- distribution systems supplied by engine generator sets
- long cables in IT and TN systems.

Installation :

- in power switchboards.

All circuit breakers in the ComPact NS range offer positive contact indication and are suitable for isolation in compliance with standards IEC 60947-1 and 2

Earth-leakage
> page A-45
Additional earth-leakage protection protects
life and property against the risks of faulty insulation in the installation.

Depending on the circuit breaker, earth-leakage protection is provided by: ■ using a specific Micrologic control unit - using a Vigirex relay and separate toroids.

The exceptional current-limiting capacity of ComPact NS circuit breakers automatically ensures type-2 coordination with the motor starter, in compliance with standard IEC 60947-4-1.

Protection of motors feeders (AC 220/690 V) >page A-44

When combined with a motor starter, ComPact NS circuit breakers protect the cables and the starter against short-circuits. Equipped with an electronic trip unit, ComPact NS circuit breakers also protect the cables, starter and motor against overloads.

Service connection

ComPact NS service connection circuit breakers are specially designed for the service-connection function: ■ lead seals and locking systems - tripping curves certified by utilities - fast overload curves to limit the power supplied, etc.

ComPact INV switch-disconnectors offering visible break (see the corresponding catalogue) can be combined with ComPact NS circuit breakers to constitute the various types of service connections and meet the needs of all installation configurations.

Control and isolation using switch-disconnectors
> page A-46

A switch-disconnector version of ComPact NS circuit breakers exists for circuit control and isolation.
All the additional functions may be combined with the basic switch-disconnector function, including:

- earth-leakage protection
- motor mechanism.

For information on other switch-disconnector ranges, see the ComPact INS/INV (offering positive contact indication and visible break) and FuPact (fuse switch) catalogues.

Source-changeover systems
To ensure a continuous supply of power, some electrical installations are connected to two power sources:

- a source "S1"
- a source "S2" to supply the installation when the source " S 1 " is not available. A mechanical and/or electrical interlocking system between two circuit breakers or switch-disconnectors avoids all risk of parallel connection of the sources during switching.

A source-changeover system can be:

- manual with mechanical device interlocking - remote controlled with mechanical and/or electrical device interlocking automatic by adding a controller to manage switching from one source to the other on the basis of external parameters.

[^0]They can be combined with the FDM121 switchboard display unit to provide all the functions of a Power Meter as well as operating assistance.

Power Meter functions

page A-18
All ComPact circuit breakers are equipped with a Micrologic control unit that can be changed on site.
Control units are designed to protect Power circuits and loads.
Alarms may be programmed for remote indications.
In addition to protection functions, Micrologic S/A/E/P control units offer all the functions of Power Meter products as well as operating-assistance for the circuit breaker.

Operating-assistance functions
 > page

A-20

Integration of measurement functions provides operators with operating assistance functions including alarms tripped by user-selected measurement values, time-stamped event tables and histories, and maintenance indicators.

Switchboard-display unit functions >page

 A-21The main measurements can be read on the built-in screen of Micrologic 2 / 5 / 6 / 7 trip units.
They can also be displayed on the FDM switchboard display unit along with pop-up windows signalling the main alarms.

Communication

> page A-28

ComPact NS equipped with Micrologic provide communication capabilities. Simple RJ45 cords connect to a Modbus interface module.
■ IFM: Modbus interface module.

- IFE: Ethernet interface module.
- I/O application module.
- Ecoreach software.

Introduction

General characteristics for NS630b to 3200 range

Electrically operated ComPact NS circuit breaker.

Manually operated ComPact NS circuit breaker.

Standardised characteristics indicated on the rating plate: Ui: rated insulation voltage
Uimp: rated impulse withstand voltage
Icu: ultimate breaking capacity, for various values of the rated operational voltage Ue
cat: utilisation category
Icw: rated short-time withstand current
Ics: service breaking capacity
In: rated current
$\times \mathrm{H}$ suitable for isolation

Compliance with standards

ComPact NS circuit breakers and auxiliaries comply with the following:

- international recommendations:
\square IEC 60947-1 - general rules
\square IEC 60947-2 - circuit breakers
\square IEC 60947-3 - switches, disconnectors, switch-disconnectors, etc.
\square IEC 60947-4 - contactors and motor starters
\square IEC 60947-5.1 and following - control circuit devices and switching elements;
automatic control components
■ European (EN 60947-1 and EN 60947-2) and the corresponding national standards:
\square France NF
\square Germany VDE
\square U.K. BS
\square Australia AS
\square Italy CEI
- the specifications of the marine classification companies (Veritas, Lloyd's Register of Shipping, Det Norske Veritas, etc.)
- French standard NF C 79-130 and the recommendations issued by the CNOMO organisation for the protection of machine tools.
For U.S. UL, Canadian CSA, Mexican NOM and Japanese JIS standards, please consult us

Pollution degree

ComPact NS circuit breakers are certified for operation in pollution-degree 3 environments as defined by IEC standard 60947 (industrial environments).
Tropicalisation
ComPact NS circuit breakers have successfully passed the tests prescribed by the following standards for extreme atmospheric conditions:

- IEC 60068-2-1 - dry cold ($-55^{\circ} \mathrm{C}$)
- IEC 60068-2-2 - dry heat (+85 ${ }^{\circ} \mathrm{C}$)
- IEC 60068-2-30 - damp heat (95 \% relative humidity at $55^{\circ} \mathrm{C}$)
- IEC 60068-2-52 - salt mist (severity level 2)

Environmental protection
ComPact NS circuit breakers take into account important concerns for environmental protection. Most components are recyclable and the parts of ComPact NS630b to NS3200 circuit breakers are marked as specified in applicable standards.

Ambient temperature

- ComPact NS circuit breakers may be used between $-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$.

For temperatures higher than $40^{\circ} \mathrm{C}\left(65^{\circ} \mathrm{C}\right.$ for circuit breakers used to protect motor feeders), devices must be derated as indicated in the documentation. - circuit-breakers should be put into service under normal ambient operatingtemperature conditions. Exceptionally, the circuit breaker may be put into service when the ambient temperature is between $-35^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$.
the permissible storage-temperature range for ComPact NS circuit breakers in the original packing is $-50^{\circ} \mathrm{C}{ }^{[1]}$ to $+85^{\circ} \mathrm{C}$.
Selectivity
As standard, the ComPact NS range ensures selectivity between two circuit breakers positioned in series in an installation.

[1] - $40^{\circ} \mathrm{C}$ for Micrologic control units with an LCD screen.

General characteristics for NS630b to 3200 range

Positive contact indication

All ComPact NS circuit breakers are suitable for isolation as defined in IEC standard 60947-2:

- the isolation position corresponds to the O (OFF) position

■ the operating handle cannot indicate the "OFF" position unless the contacts are effectively open

- padlocks may not be installed unless the contacts are open.

Installation of a rotary handle or a motor mechanism does not alter the reliability of the position-indication system.
The isolation function is certified by tests guaranteeing:

- the mechanical reliability of the position indication system
- the absence of leakage currents
- overvoltage withstand capacity between upstream and downstream connections.

Installation in class II switchboards
All ComPact NS circuit breakers are class II front face devices. They may be installed through the door of class II switchboards (as per IEC standard 60664), without downgrading switchboard insulation. Installation requires no special operations, even when the circuit breaker is equipped with a rotary handle or a motor mechanism.
Degree of protection
As per standards IEC 60529 (IP degree of protection) and EN 50102 (IK degree of protection against external mechanical imPacts).
Bare circuit breaker with terminal shields
With toggle IP40 IK07

With direct rotary handle
IP40 IK07
standard / VDE

Circuit breaker installed in a switchboard

Protection of distribution systems

Overview of solutions

Protection of distribution systems means protection of:
■ systems supplied by a transformer

- systems supplied by an engine generator set
- long cables in IT and TN systems.

Power distribution

Selection of circuit breakers from 630 to 3200 A page A-2

Accompanying control units up to 3200 A

 page A-20Micrologic electronic control units may be used on all ComPact NS630b to NS3200 circuit breakers and can be changed on site.
[1] Only for manual operated version.

Functions and characteristics

Protection of distribution systems
ComPact NS circuit breakers from 630b up to 3200 A. A-2
Micrologic control units
Overview of functions A-6
For ComPact NS630b to 3200 A-8
Micrologic A "ammeter". A-10
Micrologic E "energy" A-12
Micrologic P "power" A-14
Power Meter functions Micrologic A/E/P control unit with COM option (BCM ULP) and COM Ethernet gateway A-18
Operating-assistance functions
Micrologic A/E/P control unit with COM option (BCM ULP) A-20
Switchboard-display functions
Micrologic A/E/P control unit with COM option (BCM ULP) A-21
Micrologic A/E/P control unit with COM Ethernet gateway A-23
Protection of distribution systems Micrologic control units for ComPact NS630b to 3200 A-25
Enerlin'X communication system Products overview A-28
Communication
Communication wiring system A-30
Overview of functions. A-31
COM option in ComPact A-32
Communication architecture A-33
IFE Ethernet interface A-34
IFM Modbus communication interface. A-36
Connection of the IFE to a fixed or drawout ComPact NS A-38
Connection of the IFM to a fixed or drawout ComPact NS A-39
I/O application module A-40
Electrical Asset Manager Configuration Engineering tool A-42
Motor protection
Overview of solutions A-44
Earth-leakage protection
Overview of solutions A-45
Control and isolationOverview of solutions.A-46
Control and disconnection
ComPact NS630bNA to 1600NA switch-disconnectors. A-48
ComPact NS1600bNA to 3200NA switch-disconnectors A-50
Source-changeover systems
Presentation A-52
Manual source-changeover systems A-53
Electrical interlocking IVE unit. A-54
Remote-operated systems A-55
Source-changeover systems
Associated controllers A-56
Electrical and mechanical accessories
ComPact NS630b to 1600 (fixed version). A-58
ComPact NS630b to 1600 (withdrawable version) A-59
ComPact NS630b to 1600 A-60
ComPact NS1600b to 3200 (fixed version) A-77
ComPact NS1600b to 3200 A-78

Protection of distribution systems
 ComPact NS circuit breakers from 630b up to 3200 A

ComPact NS1600H.

ComPact NS2000H.
[1] $65{ }^{\circ} \mathrm{C}$ with vertical connections. See the temperature derating tables for other types of connections.
A-2

> Life Is JUn

Schneider

ComPact circuit breakers
Number of poles

	Control	toggle
	electric	direct or extended rotary handle

Electrical characteristics as per IEC 60947-2 and EN 60947-2

Pollution degree

Protection of distribution systems ComPact NS circuit breakers from 630b up to 3200 A

NS630b		NS800		NS1000			NS1250		NS1600		$\begin{aligned} & \text { NS1600b } \\ & 3,4 \end{aligned}$		NS2000	NS2500	NS3200
3, 4				3,4					$3,4$						
\bigcirc				\bigcirc			\bigcirc		\bigcirc		\bigcirc				
\bigcirc				\bigcirc			\bigcirc		\bigcirc		-				
\bigcirc (except LB)				\bigcirc			\bigcirc		\bigcirc		-				
N	H	L	LB	N	H	L	N	H	N	H	N	H			
\bigcirc	\bigcirc	\bigcirc	-	\bigcirc		\bigcirc									
\bigcirc	-	-													
\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-			
\bigcirc	-	-													
\bigcirc	-	-													
630		800		1000			1250		1600		1600		2000	2500	3200
630		800		1000			1250		1510		1550		1900	2500	2970
800				800			800		800		800				
8				8			8		8		8				
690				690			690		690		690				
N	H	L	LB	N	H	L	N	H	N	H	N	H			
85	85	150	200	85	85	150	85	85	85	85	85	125			
50	70	150	200	50	70	150	50	70	50	70	70	85			
50	65	130	200	50	65	130	50	65	50	65	65	85			
40	50	100	100	40	50	100	40	50	40	50	65	-			
30	42	-	75	30	42	-	30	42	30	42	65	-			
50	50	150	200	50	52	150	50	52	37	37	65	94			
50	50	150	200	50	52	150	50	52	37	37	52	64			
50	50	130	200	50	48	130	50	48	37	37	65	64			
40	40	100	100	40	37	100	40	37	30	30	65	-			
30	30	-	75	30	31	-	30	31	22	22	65	-			
50	70	150	-	50	70	150	50	70	50	70	-				
50	70	150	-	50	70	150	50	70	50	70					
50	65	130	-	50	65	130	50	65	50	65					
40	50	100	-	40	50	100	40	50	40	50					
30	42	-	-	30	42	-	30	42	30	42					
37	37	150	-	37	37	150	37	37	37	37	-				
37	37	150	-	37	37	150	37	37	37	37					
37	37	130	-	37	37	130	37	37	37	37					
30	30	100	-	30	30	100	30	30	30	30					
22	22	-	-	22	22	-	22	22	22	22					
19.2	19.2	-	-	19.2	19.2	-	19.2	19.2	19.2	19.2	-				
-	-	-	-	-	-	-	-	-	-	-	32				
40	40	-	-	40	40	-	40	40	40	40	130				
\bigcirc				\bigcirc			\bigcirc		\bigcirc		\bigcirc				
B	B	A	A	B	B	A	B	B	B	B	B				
10000				10000			10000		10000		5000				
6000	6000	4000	4000	6000	6000	4000	5000		5000		3000				
5000	5000	3000	3000	5000	5000	3000	4000		2000		2000				
4000	4000	3000	3000	4000	4000	3000	3000		2000		2000				
2000	2000	2000	2000	2000	2000	2000	2000		1000		1000				
3				3			3		3		3				

Protection of distribution systems
 ComPact NS circuit breakers from 630b up to 3200 A

Electrically operated device.

ComPact circuit breakers
Protection and measurements

Interchangeable control units		
Overload protection	long time	$\operatorname{lr}(\ln \times \ldots)$
Short-circuit protection	short time	Isd $(\operatorname{lr} \times \ldots)$
	instantaneous	li $(\ln \times \ldots)$

Earth-fault protection $\lg (\ln x \ldots)$
Residual earth-leakage protection I Δ n

Zone selective interlocking ZSI
Protection of the fourth pole
Current measurements
Power measurements
Advanced protection
Quick view
Remote communication by bus
Device-status indication
Device remote operation [2]
Transmission of settings
Indication and identification of protection devices and alarms
Transmission of measured current values

ComPact circuit breakers

Additional indication and control auxiliaries

Indication contacts

Voltage releases	MX shunt release/MN undervoltage release
Installation	
Accessories	terminal extensions and spreaders
	terminal shields and interphase barriers
	escutcheons

Dimensions fixed devices, front connections (mm) 3P
$\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ 4P
Weight fixed devices, front connections (kg) 3P
4P

Source changeover system (see section on "source changeover systems")

Manual, remote-operated and automatic source
changeover systems
[1] Except 1600b-3200.
[2] With NS630b...NS1600, remote operation is possible with electrically operated device. With NS1600...NS3200, remote operation is not possible.

Protection of distribution systems

ComPact NS circuit breakers from 630b up to 3200 A

Micrologic control units

Overview of functions

All ComPact circuit breakers are equipped with a Micrologic control unit that can be changed on site. Control units are designed to protect Power circuits and loads. Alarms may be programmed for remote indications. Measurements of current, voltage, frequency, power and power quality optimise continuity of service and energy management.

Micrologic name codes

2.0 E
 X Y Z

X: type of protection

- 2 for basic protection
- 5 for selective protection
- 6 for selective + earth-fault protection
- 7 for selective + earth-leakage protection.

Y: control-unit generation
Identification of the control-unit generation.
" 0 " signifies the first generation.
Z: type of measurement

- A for "ammeter"
- E for "energy"
- P for "power meter"

Dependability

Integration of protection functions in an ASIC electronic component used in all Micrologic control units guarantees a high degree of reliability and immunity to conducted or radiated disturbances.
On Micrologic A, E and P control units, advanced functions are managed by an independent microprocessor.

Accessories

Certain functions require the addition of Micrologic control unit accessories, described on page A-28.
The rules governing the various possible combinations can be found in the documentation accessible via the Products and services menu of the www.schneider-electric.com web site.

Current protection

Micrologic 2: basic protection

Micrologic 5: selective protection

Micrologic 6: selective + earth-fault protection

Micrologic 7: selective + earth-leakage

Protection:
long time

+ short time
+ instantaneous

Protection:
long time

+ short time
+ instantaneous
+ earth leakage up to 3200A

Micrologic control units
 Overview of functions

Micrologic Measurements and programmable protection
without
measurement

A: ammeter

$-I_{1}, I_{2}, I_{3}, I_{N}, l_{\text {earth-fault }}, l_{\text {earth-leakage }}$ and maximeter for these measurements - fault indications
\square settings in amperes and in seconds.

E: Energy

incorporates all the rms measurements of Micrologi
A, plus voltage, power
factor, power and energy metering measurements. \square calculates the current demand value
\square "Quickview" function for the automatic cyclical display of the most useful values (as standard or by selection).

P: A + power meter + programmable protection - measurements of $\mathrm{V}, \mathrm{A}, \mathrm{W}, \mathrm{VAR}, \mathrm{VA}, \mathrm{Wh}, \mathrm{VARh}, \mathrm{VAh}$, $\mathrm{Hz}, \mathrm{V}_{\text {peak }}, \mathrm{A}_{\text {peak }}$, power factor and maximeters and minimeters

- IDMTL long-time protection, minimum and maximum voltage and frequency, voltage and current imbalance, phase sequence, reverse power
- load shedding and reconnection depending on power or current
- measurements of interrupted currents, differentiated fault indications, maintenance indications, event histories and time-stamping, etc.

Micrologic control units
 For ComPact NS630b to 3200

Micrologic 2.0, 5.0 and 6.0 control units protect power circuits. Micrologic 5.0 and 6.0 offers time selectivity for short-circuits as well.

A long-time threshold and tripping delay
B overload alarm (LED)
C short-time pick-up and tripping delay
D instantaneous pick-up
E fixing screw for long-time rating plug
F test connector
G indication of tripping cause
H earth-leakage or earth-fault pick-up and tripping delay

Note: Micrologic control units are equipped with a transparent lead-seal cover as standard

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.
Thermal memory: thermal image before and after tripping
Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug.
Overload protection can be cancelled using a specific LT rating plug "Off".

Short-circuit protection

Short-time (rms) and instantaneous protection
Selection of I^{22} type (ON or OFF) for short-time delay.

Earth-fault protection

Residual or source ground return earth fault protection.
Selection of $\mathrm{I}^{2 \mathrm{t}}$ type (ON or OFF) for delay.

Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position
switch: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{lr}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2$) or neutral protection at $\operatorname{lr}(4 \mathrm{P} 4 \mathrm{~d})$.
Indications
Overload indication by alarm LED on the front; the LED goes on when the current exceeds the long-time trip threshold.
Test
A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation after installing the trip unit or accessories
Fault indications (only for micrologic 6.0)
LEDs indicate the type of fault:

- overload (long-time protection Ir)
- short-circuit (short-time Isd or instantaneous li protection)
- earth fault or earth leakage (lg)
- internal fault (Ap).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years

Micrologic control units For ComPact NS630b to 3200

Micrologic 2.0

	Current setting (A)	Ir $=\ln \mathrm{x} \ldots$		0.40 .5	0.6	0.7	0.8	0.9	0.95	0.98	1
	tripping between 1.05	nd $1.20 \times \mathrm{lr}$		other range	or dis	sable	y chan	ging l	ng-tim	ratin	plug
	Time setting		t_{r} (s)	tr $=0.5 \mathrm{~s}$ to	24 s,	step 0	5 s for				
	Time setting exemple:	Accuracy: 0 to -30\%	$1.5 \times \mathrm{Ir}$	12.525	50	100	200	300	400	500	600
	time delay (s)	Accuracy: 0 to -20 \%	$6 \times \mathrm{Ir}$	$0.5{ }^{[1]} 1$	2	4	8	12	16	20	24
		Accuracy: 0 to -20 \%	$7.2 \times \mathrm{lr}$	$0.7{ }^{[2]} 0.69$	1.38	2.7	5.5	8.3	11	13.8	16.6
	Thermal memory			20 minutes before and after tripping							
	Instantaneous										
0	Pick-up (A)	$\boldsymbol{I s d}=\operatorname{lr} \times \ldots$		1.52	2.5	3	4	5	6	8	10
	Accuracy: ± 10 \%										
	Time delay			Max resetta Max break	ble tim ime: 8	$\begin{aligned} & \text { e: } 20 \\ & 0 \mathrm{~ms} \end{aligned}$					

Micrologic 5.0 / 6.0 / 7.0

Long-time

Current setting (A)	Ir $=\ln \mathrm{x} \ldots$		0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1
Tripping between 1.05 and $1.20 \times \mathrm{lr}$			Other ranges or disable by changing long-time rating plug								
Time setting		tr (s)	0.5	1	2	4	8	12	16	20	24
Time setting exemple: time delay (s)	Accuracy: 0 to -30\%	$1.5 \times \mathrm{lr}$	$\begin{aligned} & 12.5 \quad 25 \\ & 0.5^{[1]} 1 \\ & 0.7^{[2]} 0.69 \end{aligned}$		50	100	200	300	400	500	600
	Accuracy: 0 to -20\%	$6 \times \mathrm{lr}$			2	4	8	12	16	20	24
	Accuracy: 0 to -20\%	$7.2 \times \mathrm{lr}$			1.38	2.7	5.5	8.3	11	13.8	16.6
Thermal memory			20 minutes before and after tripping								
Short-time											
Pick-up (A)	$\mathbf{I s d}=\operatorname{lr} \times \ldots$		1.5	2	2.5	3	4	5	6	8	10
Accuracy: ± 10 \%											
Time setting tsd (s)	Settings	${ }^{2} \mathrm{t}$ Off	0	0.1	0.2	0.3	0.4				
		$\mathrm{I}^{2} \mathrm{t}$ On	-	0.1	0.2	0.3	0.4				
Operating time at $10 \times$ Ir max resettable time			20	80	140	230	350				
$\mathrm{I}^{2} \mathrm{t}$ Off or $\mathrm{I}^{2} \mathrm{t}$ On	max break time		80	140	200	320	500				
Instantaneous											
Pick-up (A) Accuracy: ± 10 \%	$\mathbf{l}=\ln \mathrm{x} \ldots$		2	3	4	6	8	10	12	15	off
Operating time			Standard								
	max resettable time		20 ms								
	max break time		50 ms								

Micrologic 6.0

Note: all current-based protection functions require no auxiliary source.
The test / reset button resets maximeters, clears the tripping indication and tests the battery.
[1] 0 to -40 \% - [2] 0 to -60 \%

Note: Micrologic A control units come with a transparent lead-seal cover as standard.

"Ammeter" measurements

Micrologic A control units measure the true (rms) value of currents.
They provide continuous current measurements from 0.2 to 1.2 In and are accurate to within 1.5 \% (including the sensors).
A digital LCD screen continuously displays the most heavily loaded phase (Imax) or displays the $I_{1}, I_{2}, I_{3}, I_{N}, I_{I}, I_{n}$, stored-current (maximeter) and setting values by successively pressing the navigation button.
The optional external power supply makes it possible to display currents <20 \% In.
Below 0.1 In , measurements are not significant. Between 0.1and 0.2 In , accuracy changes linearly from 4 \% to 1.5 \%.
Communication option (COM)
In conjunction with the communication option, the control unit transmits the following:

- settings
- all "ammeter" measurements
- tripping causes
- maximeter readings.

Protection
Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.
Thermal memory: thermal image before and after tripping.
Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug.
Overload protection can be cancelled using a specific LT rating plug "Off".
Short-circuit protection
Short-time (rms) and instantaneous protection.
Selection of $\mathrm{I}^{2 t}$ type (ON or OFF) for short-time delay.

Earth-fault protection

Residual or source ground return earth fault protection.
Selection of $\mathrm{I}^{2 \mathrm{t}}$ type (ON or OFF) for delay.

Residual earth-leakage protection (Vigi).

Operation without an external power supply. Ω. Protected against nuisance tripping. ก̃ DC-component withstand class A up to 10 A .

Neutral protection

On three-pole circuit breakers, neutral protection is not possible. On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{Ir}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2)$, neutral protection at $\operatorname{lr}(4 \mathrm{P} 4 \mathrm{~d})$.

Zone selective interlocking (ZSI)

AZSI terminal block may be used to interconnect a number of control units to provide total selectivity for short-time and earth-fault protection, without a delay before tripping.

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

Fault indications

LEDs indicate the type of fault:

- overload (long-time protection Ir)
- short-circuit (short-time Isd or instantaneous li protection)
- earth fault or earth leakage (\lg or $I \Delta n$)
- internal fault (Ap).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.
Test
A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation. For Micrologic 6.0 A and 7.0 A control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector.

Micrologic 2.0 A

Micrologic 7.0 A

Micrologic 5.0 / 6.0 / 7.0 A

Ammeter			
Instantaneous currents	It, I2, I3, In	$0.2 \mathrm{x} \ln$ to $1.2 \mathrm{x} \ln$	± 1.5 \%
	$\lg (6.0 \mathrm{~A})$	0.2 x In to In	± 10 \%
	$1 \Delta \mathrm{n}(7.0 \mathrm{~A})$	0 to 30 A	± 1.5 \%
Current maximeters of	$\mathrm{I}_{1}, \mathrm{l} 2, \mathrm{l} 3, \mathrm{IN}$	$0.2 \times \ln$ to $1.2 \mathrm{x} \ln$	± 1.5 \%

The test / reset button resets maximeters, clears the tripping indication and tests the battery.
[1] 0 to $-40 \%-[2] 0$ to -60%

Micrologic control units
 Micrologic E "energy"

Micrologic E control units protect power circuits. They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection.

A long-time threshold and tripping delay
B overload alarm (LED) at 1.125 Ir
C short-time pick-up and tripping delay
D instantaneous pick-up
E earth-leakage or earth-fault pick-up and tripping delay
F earth-leakage or earth-fault test button
G long-time rating plug screw
H test connector
I lamp test, reset and battery test
J indication of tripping cause
K digital display
L three-phase bargraph and ammeter
M) navigation button "quick View" (only with Micrologic E)

N navigation button to view menu contents
O navigation button to change menu
[1] Display on FDM121 only.
Note: Micrologic E control units come with a transparent lead-seal cover as standard.

"Energy meter" measurements

In addition to the ammeter measurements of Micrologic A
Micrologic E control units measure and display:

- current demand
- voltages: phase to phase, phase to neutral, average ${ }^{[1]}$ and unbalanced ${ }^{[1]}$
- instantaneous power: P, Q, S
- power factor: PF
- power demand: P demand

■ energy: Ep, Eq ${ }^{[1]}$, Es ${ }^{[1]}$.
Accuracy of active energy Ep is 2% (including the sensors). The range of measurement is the same as current with Micrologic A, depending of an external power supply module (24 V DC).
Communication option (COM)
In conjunction with the communication option, the control unit transmits the following:

- settings
- all "ammeter" and "energy" measurements
- enable connection to FDM128
- tripping causes
- maximeter / minimeter readings.

Protection
Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.
Thermal memory: thermal image before and after tripping.
Setting accuracy may be enhanced by limiting the setting range using a different
long-time rating plug. Overload protection can be cancelled using a specific LT rating plug "Off".
Short-circuit protection
Short-time (rms) and instantaneous protection.
Selection of $I^{2} \mathrm{t}$ type (ON or OFF) for short-time delay.

Earth-fault protection

Residual or source ground return earth fault protection.
Selection of $\mathrm{I}^{2 t}$ type (ON or OFF) for delay.

Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{Ir}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2)$, neutral protection at $\operatorname{lr}(4 \mathrm{P} \mathrm{4d})$.
Zone selective interlocking (ZSI)
A ZSI terminal block may be used to interconnect a number of control units to provide total selectivity for short-time and earth-fault protection, without a delay before tripping. Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

Fault indications

LEDs indicate the type of fault:

- overload (long-time protection Ir)
- short-circuit (short-time Isd or instantaneous li protection)
- earth fault (lg)
- internal fault (Ap).

Trip history

The trip history displays the list of the last 10 trips. For each trip, the following indications are recorded and displayed:

- the tripping cause: Ir, Isd, li, Ig or Auto-protection (Ap) trips
- the date and time of the trip (requires communication option).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.
Test
A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation. For Micrologic 6.0 E control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector.

Micrologic 2.0 E

	Long-time	ANSI Code 49									
	Current setting (A)	Ir $=\ln \times \ldots$		$0.4 \quad 0.5$						0.98	1
		rating plug									
	Time setting exemple:		tr (s)	0.51	2	4		12	16	20	24
	time delay (s)	Accuracy: 0 to -30\%	$1.5 \times \mathrm{lr}$	12.525	50	100	200	300	400	500	600
		Accuracy: 0 to -20\%	6 x Ir	$0.7{ }^{[1]} 1$	2	4	8	12	16	20	24
		Accuracy: 0 to -20\%	$7.2 \times \mathrm{Ir}$	$0.7{ }^{[2]} 0.69$	1.38	2.7	5.5	8.3	11	13.8	16.6
	Thermal memory	20 minutes before and after tripping									
	Instantaneous	ANSI Code 50									
	Pick-up (A)	Isd $=\operatorname{lr} \times \ldots$		1.52	2.5	3	4	5	6	8	10
	Accuracy: ± 10 \%										
	Time delay			Max resettable time: 20 ms Max break time: 80 ms							
Micrologic 5.0 / 6.0 E											
	Long-time	ANSI Code 49									
	Current setting (A)	$\begin{aligned} & \mathrm{Ir}=\ln \mathrm{x} \ldots \\ & \mathrm{~d} 1.20 \mathrm{x} \operatorname{lr} \end{aligned}$		0.40 .5	0.6	0.7	0.8	0.9	0.95	0.98	1
	Tripping between 1.05 and $1.20 \times \mathrm{lr}$			Other ranges or disable by changing long-time rating plug							
	Time setting exemple:		tr (s)	0.51	2	4		12	16	20	24
	time delay (s)	Accuracy: 0 to -30 \%	$1.5 \times \mathrm{lr}$	12.525	50	100	200	300	400	500	600
		Accuracy: 0 to -20\%	$6 \times \mathrm{Ir}$	$0.7{ }^{[1]} 1$	2	4		12	16	20	24
		Accuracy: 0 to -20\%	$7.2 \times \mathrm{lr}$	$0.7{ }^{[2]} 0.69$	1.38	2.7	5.5	8.3	11	13.8	16.6
	Thermal memory			20 minutes before and after tripping							
	Short-time	ANSI Code 51									
	Pick-up (A)	Isd $=\operatorname{lr} \times \ldots$		1.52	2.5	3	4	5	6	8	10
	Accuracy: ± 10 \%										
	Time setting tsd (s)	Settings	${ }^{2} \mathrm{t}$ Off	$0 \quad 0.1$	0.2	0.3	0.4				
			$\mathrm{I}^{2} \mathrm{t}$ On	0.1	0.2	0.3	0.4				
	Operating time at $10 \times \mathrm{lr}$	tsd (max resettable time)		$20 \quad 80$	140	230	350				
	$\mathrm{I}^{2} \mathrm{t}$ Off or $\mathrm{I}^{2} \mathrm{t}$ On	tsd (max break time)		80140	200	320	500				
	Instantaneous	ANSI Code 50									
	Pick-up (A)	$\mathbf{l}=\ln \mathrm{x} \ldots$		23	4	6	8	10	12	15	off
	Accuracy: ± 10 \%										
	Operating time	max resettable time		20 ms							
		max break time		50 ms							

Micrologic 6.0 E

Micrologic 5.0 / 6.0 / 7.0 E

Micrologic control units
Micrologic P "power"

Micrologic P control units include all the functions offered by Micrologic A. In addition, they measure voltages and calculate power and energy values. They also offer new protection functions based on currents, voltages, frequency and power reinforce load protection in real time.

A long-time current setting and tripping delay
B overload signal (LED)
C short-time pick-up and tripping delay
D instantaneous pick-up
E earth-leakage or earth-fault pick-up and tripping delay
F earth-leakage or earth-fault test button
G long-time rating plug screw
H) test connector

I lamp + battery test and indications reset
J indication of tripping cause
$\overline{\mathrm{K}}$ high-resolution screen
L measurement display
(M) maintenance indicators

N navigation buttons
O navigation buttons
P hole for settings lockout pin on cover
Note: Micrologic P control units come with a non-transparent lead-seal cover as standard.

Protection

Protection settings

The adjustable protection functions are identical to those of Micrologic A (overloads, short-circuits, earth-fault and earth-leakage protection).

Fine adjustment

Within the range determined by the adjustment dial, fine adjustment of thresholds (to within one ampere) and time delays (to within one second) is possible on the keypad or remotely using the COM option.

IDMTL (Inverse Definite Minimum Time Lag) setting

Coordination with fuse-type or medium-voltage protection systems is optimised by adjusting the slope of the overload-protection curve. This setting also ensures better operation of this protection function with certain loads.

Neutral protection

On three-pole circuit breakers, neutral protection may be set using the keypad or remotely using the COM option, to one of four positions: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{lr}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2)$, neutral protection at Ir (4P 4d) and neutral protection at $1.6 \operatorname{Ir}(4 \mathrm{P} 3 \mathrm{~d}+1.6 \mathrm{~N})$. Neutral protection at 1.6 Ir is used when the neutral conductor is twice the size of the phase conductors (major load imbalance, high level of third order harmonics).
On four-pole circuit breakers, neutral protection may be set using a three-position switch or the keypad: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{Ir}(4 \mathrm{P} 3 \mathrm{~d}$ $+\mathrm{N} / 2$), neutral protection at Ir (4P4d). Neutral protection produces no effect if the long-time curve is set to one of the IDMTL protection settings.
Programmable alarms and other protection
Depending on the thresholds and time delays set using the keypad or remotely using the COM option, the Micrologic P control unit monitors currents and voltage, power, frequency and the phase sequence. Each threshold overrun is signalled remotely via the COM option. Each threshold overrun may be combined with tripping (protection) or an indication carried out by an optional I/O module (alarm), or both (protection and alarm).
Load shedding and reconnection
Load shedding and reconnection parameters may be set according to the power or the current flowing through the circuit breaker. Load shedding is carried out by a supervisor via the COM option or by I/O application module.
Indication option via I/O application module
I/O application module may be used to signal threshold overruns or status changes.
They can be programmed using the COM option (BCM ULP) and Ecoreach software.
Communication option (COM)
The communication option may be used to:

- remotely read and set parameters for the protection functions
- transmit all the calculated indicators and measurements
- signal the causes of tripping and alarms
- consult the history files and the maintenance-indicator register - maximeter reset.

An event log and a maintenance register, stored in control-unit memory but not available locally, may be accessed in addition via the COM option (BCM ULP).

Micrologic 5.0 / 6.0 / 7.0 P (Protection)

Micrologic 6.0 P (Protection)

Earth fault	ANSI Code 51N										
Pick-up (A)	$\lg =\ln x \ldots$		A	B	C	D	E	F	G	H	J
Accuracy: $\pm 10 \%$	$\ln \leqslant 400 \mathrm{~A}$		0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	$400 \mathrm{~A}<\ln <1250 \mathrm{~A}$		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	$\mathrm{l} \mathrm{n} \geqslant 1250 \mathrm{~A}$		500	640	720	800	880	960	1040	1120	1200
Time setting tg (s)	Settings	$1^{2}+$ Off	0	0.1	0.2	0.3	0.4				
		$\mathrm{I}^{2} \mathrm{t}$ On	-	0.1	0.2	0.3	0.4				
Time delay (ms)	$\begin{aligned} & \mathbf{t g}=\text { max resettable time } \\ & \mathbf{t g}=\text { max break time } \end{aligned}$		20	80	140	230	350				
at In or 1200A (12t Off or 1^{2} t On)			80	140	200	320	500				

Micrologic 7.0 P (Protection)

Residual earth leakage (Vigi) ANSI Code 51G										
Sensitivity (A)	$1 \Delta \mathrm{n}$	0.5	1	2	3	5	7	10	20	30
Accuracy: 0 to -20\%										
Time delay $\Delta \mathrm{t}(\mathrm{ms})$	Settings	60	140	230	350	800				
	max resettable time	60	140	230	350	800				
	max break time	140	200	320	500	1000				

Micrologic 5.0 / 6.0 / 7.0 P (Load shedding and reconnection)

Measured value
Current
Power

Delay

Threshold
0.5 to 1 Ir per phas
200 kW to 10 MW
0.5 to 1 Ir per phases

20 \% tr to 80 \% tr
10 to 3600 s

Micrologic 5.0 / 6.0 / 7.0 P (Power)

Type of measurements	Range	Accuracy	
Current maximeters of	$I 1, I 2, I 3, I N$	$0.2 \times \ln$ to $1.2 \times \ln$	$\pm 1.5 \%$
Volatges	$\mathrm{V} 12, \mathrm{~V} 23, \mathrm{~V} 31, \mathrm{~V} 1 \mathrm{~N}, \mathrm{~V} 2 \mathrm{~N}, \mathrm{~V} 3 N$	100 to 690 V	$\pm 0.5 \%$
Power factor	PF	0 to 1	$\pm 2 \%$
Frequency (Hz)			0.1%

[1] 0 to $-40 \%-[2] 0$ to $-60 \%-[3] \ln \leqslant 400$ A $30 \% 400$ A $<\ln <1250$ A $20 \% \ln \leqslant 1250$ A 10% -
[4] For 690 V applications, a step-down transformer must be used if the voltage exceeds the nominal value of 690 V by more than 10%.
Note: all current-based protection functions require no auxiliary source.
Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

Micrologic control units
Micrologic P "power"

Default display.

Display of a voltage.

Display of a frequency.

Display of a maximum current.

Display of a demand power.

PME software.

Measurements

The Micrologic P control unit calculates in real time all the electrical values ($\mathrm{V}, \mathrm{A}, \mathrm{W}$, VAR, VA, Wh, VARh, VAh, Hz), power factors and cosj factors.
The Micrologic P control unit also calculates demand current and demand power over an adjustable time period. Each measurement is associated with a minimeter and a maximeter.
In the event of tripping on a fault, the interrupted current is stored. The optional external power supply makes it possible to display the value with the circuit breaker open or not supplied.

Instantaneous values

The value displayed on the screen is refreshed every second.
Minimum and maximum values of measurements are stored in memory (minimeters and maximeters).

Currents

I rms	A	1	2	3	N
	A	E-fault			
Imax rms	A	1	2	3	N
	A	E-fault			
Voltages					
U rms	V	12	23	31	
Vrms	V	1 N	2N	3 N	
U average rms	V	(U12 +	3 +		
U unbalance	\%				
Power, energy					
P active, Qreactive, S apparent W, Var, VA Totals					
E active, E reactive, E apparent	Wh, VARh, VAh	Totals consumed - supplied			
Power factor	PF	Total			
Frequencies					
F	Hz				

Demand metering

The demand is calculated over a fixed or sliding time window that may be programmed from 5 to 60 minutes. According to the contract signed with the power supplier, an indicator associated with a load shedding function makes it possible to avoid or minimise the costs of overrunning the subscribed power. Maximum demand values are systematically stored and time stamped (maximeter).

Currents	A	1	2	3	
I demand	A	E-fault		E-leakage	N
I max demand	A	1	2	3	N
Power	A	E-fault		E-leakage	
P, Q, S demand	W, Var, VA Totals				
P, Q, S max demand	W, Var, VA Totals				

Minimeters and maximeters

Only the current and power maximeters may be displayed on the screen.
Time-stamping
Time-stamping is activated as soon as time is set manually or by a supervisor.
No external power supply module is required (max. drift of 1 hour per year).

Reset

An individual reset, via the keypad or remotely, acts on alarms, minimum and maximum data, peak values, the counters and the indicators.

Additional measurements accessible with the COM option (BCM ULP)
Some measured or calculated values are only accessible with the COM communication option:

- I peak $/ \sqrt{2},\left(I_{1}+I_{2}+I_{3}\right) / 3$, I unbalance
- load level in \% Ir
- total power factor.

The maximeters and minimeters are available only via the COM option (BCM ULP) for use with a supervisor.

Additional info

Accuracy of measurements (including sensors):

- voltage (V) 0.5 \%
- current (A) 1.5 \%
- frequency (Hz) 0.1 \%
- power (W) and energy (Wh) 2 \%.

Micrologic control units Micrologic P "power"

Histories and maintenance indicators

The last ten trips and alarms are recorded in two separate history files that may be displayed on the screen:

- tripping history:
\square type of fault
\square date and time
\square values measured at the time of tripping (interrupted current, etc.)
- alarm history:
\square type of alarm
\square date and time
\square values measured at the time of the alarm.
All the other events are recorded in a third history file which is only accessible through the communication network.
- Event log history (only accessible through the communication network)
\square modifications to settings and parameters
\square counter resets
\square system faults
\square fallback position
\square thermal self-protection
\square loss of time
\square overrun of wear indicators
\square test-kit connections
\square etc.
Note: all the events are time stampled: time-stamping is activated as soon as time is set manually or by a supervisor. No external power supply module is required (max. drift of 1 hour per year). Maintenance indicators with COM option (BCM ULP)
A number of maintenance indicators may be called up on the screen to better plan for device maintenance:
- contact wear
- operation counter:
\square cumulative total
\square total since last reset.
Additional maintenance indicators are also available through the COM network, and can be used as an aid in troubleshooting:
- highest current measured
- number of test-kit connections
- number of trips in operating mode and in test mode.

Additional technical characteristics

Safety

Measurement functions are independent of the protection functions. The high-accuracy measurement module operates independently of the protection module.

Simplicity and multi-language

Navigation from one display to another is intuitive. The six buttons on the keypad provide access to the menus and easy selection of values. When the setting cover is closed, the keypad may no longer be used to access the protection settings, but still provides access to the displays for measurements, histories, indicators, etc. Micrologic is also multi-language, including the following languages: English, Spanish, Portuguese, Russian, Chinese, French, German...

Intelligent measurement

Measurement-calculation mode:

- energies are calculated on the basis of the instantaneous power values, in two manners:
\square the traditional mode where only positive (consumed) energies are considered \square the signed mode where the positive (consumed) and negative (supplied) energies are considered separately
- measurement functions implement the new "zero blind time" concept which consists in continuously measuring signals at a high sampling rate. The traditional "blind window" used to process samples no longer exists. This method ensures accurate energy calculations even for highly variable loads (welding machines, robots, etc.).

Always powered

All current-based protection functions require no auxiliary source. Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

Stored information

The fine setting adjustments, the last 100 events and the maintenance register remain in the control-unit memory even when power is lost.

Display of a tripping history.

Display after tripping.

Power Meter functions
Micrologic A/E/P control unit with COM option (BCM ULP) and COM Ethernet gateway

In addition to protection functions, Micrologic A/E/P control units offer all the functions of Power Meter products as well as operating-assistance for the circuit breaker.

FDM121 display: navigation.

FDM121 display: current.

FDM121 display: voltage.

FDM121 display: power.

FDM121 display: consumption.

FDM128 display: navigation.

FDM128 display: current.

FDM128 display: voltage.

FDM128 display: power.

FDM128 display: consumption.

Examples of measurement screens on the FDM121 display unit.

Micrologic A/E/P measurement functions are made possible by Micrologic intelligence and the accuracy of the sensors. They are handled by a microprocessor that operates independent of protection functions.

Display

FDM121 display unit (one to one)
The FDM121 switchboard display unit can be connected to a COM option (BCM ULP) using a breaker ULP cord to display all measurements on a screen ${ }^{[1]}$. The result is a veritable $96 \times 96 \mathrm{~mm}$ Power Meter.
The FMD121 display unit requires a 24 V DC power supply. The COM option (BCM ULP) unit is supplied by the same power supply via the breaker ULP cord connecting it to the FDM121.
[1] See page A-28.
FDM128 display unit (one to eight)
Using an IFE Ethernet interface for LV breakers.
For all FDM, in addition to the information displayed on the Micrologic LCD, the FDM screen shows demand, power quality and maximeter/minimeter values along with histories and maintenance indicators.

Measurements

Instantaneous rms measurements

The Micrologic continuously display the RMS value of the highest current of the three phases and neutral (Imax). The navigation buttons can be used to scroll through the main measurements.
In the event of a fault trip, the trip cause is displayed.
The Micrologic A measures phase, neutral, ground fault currents.
The Micrologic E offers voltage, power, Power Factor, measurements in addition to the measurements provided by Micrologic A.
The Micrologic P offer frequency, cos. φ in addition to the measurements provided by Micrologic E.

Maximeters / minimeters

Every instantaneous measurement provided by Micrologic A or E can be associated with a maximeter/minimeter. The maximeters for the highest current of the 3 phases and neutral, the demand current and power can be reset via the FDM display unit or the communication system.
Energy metering
The Micrologic E/P also measures the energy consumed since the last reset of the meter. The active energy meter can be reset via Micrologic keypad or the FDM display unit or the communication system.
Demand and maximum demand values
Micrologic E/P also calculates demand current and power values. These calculations can be made using a block or sliding interval that can be set from 5 to 60 minutes in steps of 1 minute. The window can be synchronised with a signal sent via the communication system. Whatever the calculation method, the calculated values can be recovered on a PC via Modbus communication.
Ordinary spreadsheet software can be used to provide trend curves and forecasts based on this data. They will provide a basis for load shedding and reconnection operations used to adjust consumption to the subscribed power.

Micrologic $A / E / P$ integr Display of protection settings

Pick-ups
delays
Instantaneous rms measurements

Currents (A)	Phases and neutral	I1, I2, I3, IN	A/E	P	\bigcirc	\bigcirc
	Average of phases	lavg $=(11+12+13) / 3$	A/E	P	-	\bigcirc
	Highest current of the 3 phases and neutral	Imax of I1, I2, I3, IN	A/E	P	\bigcirc	\bigcirc
	Ground fault (Micrologic 6)	\% Ig (pick-up setting)	A/E	P	O	O
	Current unbalance between phases	\% lavg	- /E	P	-	\bigcirc
Voltages (V)	Phase-to-phase	V12, V23, V31	-/E	P	\bigcirc	\bigcirc
	Phase-to-neutral	V1N, V2N, V3N	-/E	P	O	\bigcirc
	Average of phase-to-phase voltages	Vavg $=(\mathrm{V} 12+\mathrm{V} 23+\mathrm{V} 31) / 3$	- /E	P	-	\bigcirc
	Average of phase-to-neutral voltages	$\begin{aligned} & \operatorname{Vavg}=(\mathrm{V} 1 \mathrm{~N}+\mathrm{V} 2 \mathrm{~N}+\mathrm{V} 3 \mathrm{~N}) / \\ & 3 \end{aligned}$	- /E	P	-	\bigcirc
	$\mathrm{Ph}-\mathrm{Ph}$ and $\mathrm{Ph}-\mathrm{N}$ voltage unbalance	\% Vavg and \% Vavg	- /E	P	-	O
	Phase sequence	1-2-3, 1-3-2	-/-	P	\bigcirc	(${ }^{\text {[3] }}$
Frequency (Hz)	Power system	f	- / -	P	\bigcirc	\bigcirc
Power	Active (kW)	P, total	- /E	P	\bigcirc	\bigcirc
		P, per phase	-/E	P	$\bigcirc{ }^{[2]}$	\bigcirc
	Reactive (kVAR)	Q, total	-/E	P	\bigcirc	\bigcirc
		Q, per phase	- / -	P	\bigcirc	\bigcirc
	Apparent (kVA)	S, total	- /E	P	\bigcirc	\bigcirc
		S, per phase	- / -	P	\bigcirc	\bigcirc
	Power Factor	PF, total	-/E	P	\bigcirc	\bigcirc
		PF, per phase	- / -	P	\bigcirc	\bigcirc
	Cos. φ	Cos. φ, total	- / -	P	-	\bigcirc
		$\operatorname{Cos.\varphi ,~per~phase~}$	-/-	P	\bigcirc	\bigcirc
Maximeters / minimeters						
	Associated with instantaneous rms measurements	Reset via FDM display unit and Micrologic keypad	A/E	P	O	O
Energy metering						
Energy	Active (kW), reactive (kVARh), apparent (kVAh)	Total since last reset	-/E	P	-	O
Demand and maximum demand values						
Demand current (A)	Phases and neutral	Present value on the selected window	-/E	P	O	\bigcirc
		Maximum demand since last reset	- /E	P	$\bigcirc{ }^{\text {[2] }}$	O
Demand power	Active (kWh), reactive (kVAR), apparent (kVA)	Present value on the selected window	- /E	P	O	-
		Maximum demand since last reset	- /E	P	O ${ }^{\text {[2] }}$	\bigcirc
Calculation windowSliding, fixed or com-synchronised		Adjustable from 5 to 60 minutes in 1 minute steps	- /E	P	-	-

> com-synchronised

Operating-assistance functions
 Micrologic A/E/P control unit with COM option (BCM ULP)

Histories

- Trip indications in clear text in a number of user-selectable languages.
- Time-stamping: date and time of trip.

Maintenance indicators

Micrologic control unit have indicators for, among others, the number of operating cycles, contact wear P, load profile and operating times (operating hours counter) of the MasterPact circuit breaker.
It is possible to assign an alarm to the operating cycle counter to plan maintenance. The various indicators can be used together with the trip histories to analyse the level of stresses the device has been subjected to.

Management of installed devices

Each circuit breaker equipped with a COM option (BCM ULP) can be identified via the communication system:

- serial number
- firmware version
- hardware version
- device name assigned by the user.

This information together with the previously described indications provides a clear view of the installed devices.

Micrologic A/E/P operating assistance functions			Type		Display	
			A/E	P	Micrologic LCD	FDM121 display
Operating assistance						
Trip history						
Trips	Cause of tripping	Ir, Isd, li, Ig, I ${ }^{\text {n }}$	-/E	P	\bigcirc	\bigcirc
Maintenance indicators						
Counter	Mechanical cycles	Assignable to an alarm	A/E	P	-	\bigcirc
	Electrical cycles	Assignable to an alarm	A/E	P	-	\bigcirc
	Hours	Total operating time (hours) ${ }^{[1]}$	A/E	P	-	
Indicator	Contact wear	\%	-/-	P	-	\bigcirc
Load profile	Hours at different load levels	\% of hours in four current ranges: 0-49 \% ln, 50-79 \% In, $80-89 \%$ In and $\geqslant 90 \%$ In	A/E	P	-	\bigcirc

[1] Also available via the communication system.

Additional technical characteristics

Contact wear

Each time ComPact opens, the Micrologic P trip unit measures the interrupted current and increments the contact-wear indicator as a function of the interrupted current, according to test results stored in memory. Breaking under normal load conditions results in a very slight increment. The indicator value may be read on the FDM121 display. It provides an estimation of contact wear calculated on the basis of the cumulative forces affecting the circuit breaker. When the indicator reaches 100%, it is advised to inspect the circuit breaker to ensure the availability of the protected equipment.

Circuit breaker load profile

Micrologic A/E/P calculates the load profile of the circuit breaker protecting a load circuit. The profile indicates the percentage of the total operating time at four current levels (\% of breaker In):

- 0 to 49 \% In
- 50 to 79 \% In
- 80 to 89 \% In
- $\geqslant 90 \%$ In.

This information can be used to optimise use of the protected equipment or to plan ahead for extensions.

Micrologic measurement capabilities come into full play with the FDM121 switchboard display. It connects to COM option (BCM ULP) via a breaker ULP cord and displays Micrologic information. The result is a true integrated unit combining a circuit breaker and a Power Meter. Additional operating assistance functions can also be displayed.

FDM121 switchboard display

An FDM121 switchboard display unit can be connected to a ULP IMU using a prefabricated cord to display all measurements, alarms, histories and event tables, maintenance indicators, management of installed devices on a screen. The result is a veritable $96 \times 96 \mathrm{~mm}$ Power Meter.
The FMD121 display unit requires a 24 V DC power supply.
The FDM121 is a switchboard display unit that can be integrated in the ComPact NSX100 to 630 A, PowerPact H/J/L/P/R, ComPact NS or MasterPact systems. It uses the sensors and processing capacity of the Micrologic trip unit. It is easy to use and requires no special software or settings. It is immediately operational when connected to the ComPact NSX by a simple cord.
Also, it provides monitoring and control with the use of the I/O application module, the motor mecanism module, or the Breaker Status module.
The FDM121 is a large display, but requires very little depth. The anti-glare graphic screen is backlit for very easy reading even under poor ambient lighting and at sharp angles.
Display of Micrologic measurements and alarms
The FDM121 is intended to display Micrologic 5 / 6 measurements, alarms and operating information. It cannot be used to modify the protection settings. Measurements may be easily accessed via a menu. All user-defined alarms are automatically displayed. The display mode depends on the priority level selected during alarm set-up: - high priority: a pop-up window displays the time-stamped description of the alarm and the orange LED flashes - medium priority: the orange "Alarm" LED goes steady on

- low priority: no display on the screen.

All faults resulting in a trip automatically produce a high-priority alarm, without any special settings required. In all cases, the alarm history is updated. Micrologic saves the information in its non-volatile memory in the event of an FDM121 power failure.

Status indications and remote control

When the circuit breaker is equipped with the Breaker Status Module, the FDM121 display can also be used to view circuit breaker status conditions:

- O/F: ON/OFF
- SD: trip indication
- SDE: Fault-trip indication (overload, short-circuit, ground fault).

When the circuit breaker system is equipped with the I/O application module, the FDM121 can monitor and control:

- craddle management
- circuit breaker operation
- light and load control
- custom application.

When the circuit breaker system is equipped with the motor mechanism module, the FDM121 offers remote closing and opening control.

Main characteristics

$\square 96 \times 96 \times 30 \mathrm{~mm}$ screen requiring 10 mm behind the door (or 20 mm when the 24 V power supply connector is used).

- White backlighting.
- Wide viewing angle: vertical $\pm 60^{\circ}$, horizontal $\pm 30^{\circ}$.
- High resolution: excellent reading of graphic symbols.
- Alarm LED: flashing orange for alarm pick-up, steady orange after operator reset if alarm condition persists.
- Operating temperature range $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
\square CE / UL / CSA marking (pending).
$\square 24 \mathrm{~V}$ DC power supply, with tolerances $24 \mathrm{~V}-20 \%(19.2 \mathrm{~V})$ to $24 \mathrm{~V}+10 \%(26.4 \mathrm{~V})$. When the FDM121 is
connected to the communication network, the 24 V DC can be supplied by the communication system wiring system.
- Consumption 40 mA .

Mounting

The FDM121 is easily installed in a switchboard.

- Standard door cut-out $92 \times 92 \mathrm{~mm}$.
- Attached using clips.

To avoid a cut-out in the door, an accessory is available for surface mounting by drilling only two 22 mm diameter holes. The FDM121 degree of protection is IP54 in front. IP54 is maintained after switchboard mounting by using the supplied gasket during installation.
Connection
The FDM121 is equipped with:

- a 24 V DC terminal block:
\square plug-in type with 2 wire inputs per point for easy daisy-chaining
\square power supply range of $24 \mathrm{~V} \mathrm{DC}-20 \%(19.2 \mathrm{~V})$ to $24 \mathrm{~V} \mathrm{DC}+10 \%(26.4 \mathrm{~V})$.
A 24 V DC type auxiliary power supply must be connected to a single point on the ULP system. The FDM121 display unit has a 2-point screw connector on the rear panel of the module for this purpose. The ULP module to which the auxiliary power supply is connected distributes the supply via the ULP cable to all the ULP modules connected to the system and therefore also to Micrologic.
- two RJ45 jacks.

Switchboard-display functions
 Micrologic A/E/P control unit with COM option (BCM ULP)

1)	2	4	5

$\mathbf{1}$	escape
$\mathbf{2}$	down
$\mathbf{3}$	ok
$\mathbf{4}$	up
$\mathbf{5}$	context
$\mathbf{6}$	alarm LED

Product identification.

Metering: meter.

Metering: sub-menu.

Services.

The Micrologic connects to the internal communication terminal block on the MasterPact via the breaker ULP cord. Connection to one of the RJ45 connectors on the FDM121 automatically establishes communication between the Micrologic and the FDM121 and supplies power to the Micrologic measurement functions. When the second connector is not used, it must be fitted with a line terminator.
Navigation
Five buttons are used for intuitive and fast navigation.
The "Context" button may be used to select the type of display (digital, bargraph, analogue).
The user can select the display language (Chinese, English, French, German, Italian, Portuguese, Spanish, etc.). Screens
Main menu
When powered up, the FDM121 screen automatically displays the ON/OFF status of the device.

When not in use, the screen is not backlit. Backlighting can be activated by pressing one of the buttons. It goes off after 3 minutes.

Fast access to essential information

■ "Quick view" provides access to five screens that display a summary of essential operating information (I, U, f, P, E, THD, circuit breaker On / Off).

Access to detailed information

■ "Metering" can be used to display the measurement data (I, U-V, f, P, Q, S, E, THD, PF) with the corresponding min/max values.
Alarms displays active alarms and the alarm history.

- Services provides access to the operation counters, energy and maximeter reset
\square function, maintenance indicators, identification of modules connected to the internal bus and FDM121 internal settings (language, contrast, etc.).
Communication components and FDM121 connections

Connections

- ComPact NS is connected to the ULP devices (FDM121 display, IFM, IFE or I/O application module) unit via the breaker ULP cord.
\square cord available in three lengths: $0.35 \mathrm{~m}, 1.3 \mathrm{~m}, 3 \mathrm{~m}$ and 5 m .
\square lengths up to 10 m possible using extensions.

Micrologic measurement capabilities come into full play with the FDM128 switchboard display. It connects to Ethernet communication via RJ45 port and displays Micrologic information. The result is a true integrated unit combining a circuit breaker and a Power Meter. Additional operating assistance functions can also be displayed.

FDM128 switchboard display

The FDM128 is an intelligent Ethernet display. It collects the data from up to 8 devices via Ethernet network. The FDM128 switchboard display unit can be connected to a Micrologic COM option (BCM ULP via IFE). It uses the sensors and processing capacity of the Micrologic control unit. It is easy to use and requires no special software or settings.
The FDM128 is a large display, but requires very little depth. The anti-glare graphic screen is backlit for very easy reading even under poor ambient lighting and at sharp angles.
FDM128 switchboard display is designed to manage up to 8 devices (MasterPact, ComPact NS,
ComPact NSX or Smartlink).
Display of Micrologic measurements and trips
The FDM128 is intended to display Micrologic A/E/P measurements, trips and operating information.
It cannot be used to modify the protection settings.
Measurements may be easily accessed via a menu.
Trips are automatically displayed.
A pop-up window displays the time-stamped description of the trip.
Status indications
When the circuit breaker is equipped with the Breaker Status Command Module (BSCM) and NSX cord, the FDM128 display can also be used to view circuit breaker status conditions:

- O/F: ON/OFF
- SDE: Fault-trip indication (overload, short-circuit, ground fault)
- CE, CD, CT cradle management with I/O application module.

Remote control

When the circuit breaker is equipped with the COM option (BCM ULP) (including its kit for connection to communication voltage releases), the FDM128 display can also be used to control (open/close) the circuit breaker.
Two operating mode are available:

- local mode : open/close commands are enabled from FDM128 while disable from communication network
- remote mode : open/close commands are disabled from FDM128 while, enabled from communication network.

Main characteristics

■ $115.2 \times 86.4 \mathrm{~mm}$ with 5.7 " QVGA display 320×240 pixels.

- Color TFT LCD, LED backlight.
- Wide viewing angle: vertical $\pm 80^{\circ}$, horizontal $\pm 70^{\circ}$.
- High resolution: excellent reading of graphic symbols.
- Operating temperature range $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
\square CE / UL / CSA marking (pending).
- 24 V DC power supply, with tolerances 24 V (limit 20.4-28.8 V DC).
- Consumption $\leqslant 6.8 \mathrm{~W}$.

Mounting

The FDM128 is easily installed in a switchboard.

- Standard door hole Ø 22 mm.

The FDM128 degree of protection is IP65 in front and IP54.
Connection
The FDM128 is equipped with:

- a 24 V DC terminal block:
\square power supply range of 24 V DC (limit 20.4-28.8 V DC). The FDM128 display unit has a 2-point screw connector on the rear panel of the module for this purpose.
- One RJ45 Ethernet jacks.

The Micrologic connects to the internal communication terminal block on the MasterPact via the breaker ULP cord and Ethernet connection through IFE.

Surface mount accessory.

Switchboard-display functions

Micrologic A/E/P control unit with COM Ethernet gateway

Product identification.

Services.

Metering: meter.

Navigation

Touch screen is used for intuitive and fast navigation.
The user can select the display language (Chinese, English, French, German, Italian, Portuguese, Spanish, etc.).
Screens
Main menu

When not in use, the screen is automatically shifted to low back-lighting.

Fast access to essential information

- "Quick view" provides access to five screens that display a summary of essential operating information (I, U, f, P, E, THD, circuit breaker On / Off).

Access to detailed information

■ "Metering" can be used to display the measurement data (I, U-V, f, P, Q, S, E, THD, PF) with the corresponding $\mathrm{min} / \mathrm{max}$ values.

- Alarms displays the trip history.
- Services provides access to the operation counters, energy and maximeter reset function, maintenance indicators, identification of modules connected to the internal bus and FDM128 internal settings (language, contrast, etc.).

Protection of distribution systems
 Micrologic control units for ComPact NS630b to 3200

External sensors

External sensor for earth-fault and neutral protection

The sensors, used with the 3P circuit breakers, are installed on the neutral conductor for:

- neutral protection (with Micrologic P)
- residual type earth-fault protection (with Micrologic A, E and P).

The rating of the sensor (CT) must be compatible with the rating of the circuit breaker:

- NS630b to 1600 A - 400/1600 CT
- NS1600b to 3200 A - 1000/4000 CT.

Rectangular sensor for earth-leakage protection

The sensor is installed around the busbars (phases + neutral) to detect the zerophase sequence current required for the earth-leakage protection. Rectangular sensors are available in two sizes.
Inside dimensions (mm)
$\square 280 \times 115$ up to 1600 A for ComPact NS630b to 1600 A (L1)

- 470×160 up to 3200 A for ComPact NS1600b to 3200 A (L2).

External sensor for source ground return protection

The sensor is installed around the connection of the transformer neutral point to earth and connects to the Micrologic 6.0 control unit via an MDGF module to provide the source ground return (SGR) protection.
Long-time rating plug
Four interchangeable plugs may be used to limit the long-time threshold setting range for higher accuracy.
The time delay settings indicated on the plugs are for an overload of $6 \operatorname{lr}$ (for further details, see the characteristics on page A-13 and page A-17).
As standard, control units are equipped with the 0.4 to 1 plug.

Setting ranges										
Standard	$\operatorname{lr}=\ln \mathrm{x} \ldots$	0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1
Low-setting option	$\operatorname{lr}=\ln x \ldots$	0.4	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.8
High-setting option	$\operatorname{lr}=\ln x \ldots$	0.80	0.82	0.85	0.88	0.90	0.92	0.95	0.98	1
Off plug		No long-time protection (Ir = In for Isd setting)								

Important: long-time rating plugs must always be removed before carrying out insulation or dielectric withstand tests.

Battery module

The battery module maintains display operation and communication with the supervisor if the power supply to the Micrologic control unit is interrupted. It is installed in series between the Micrologic control unit and the AD module.

Characteristics

- Battery run-time: 4 hours (approximately).
- Mounted on vertical backplate or symmetrical rail.

Spare parts

Lead-seal covers

A lead-seal cover controls access to the adjustment dials.
When the cover is closed:
■ it is impossible to modify settings using the keypad unless the settings lockout pin on the cover is removed

- the test connector remains accessible
- the test button for the earth-fault and earth-leakage protection function remains accessible.

Characteristics

- Transparent cover for basic Micrologic and Micrologic A, E control units.
\square Non-transparent cover for Micrologic P control units.

Spare battery

A battery supplies power to the LEDs identifying the tripping causes. Battery service life is approximately ten years.
A test button on the front of the control unit is used to check the battery condition. The battery may be replaced on site when discharged.

External sensor (CT).

External sensor for earth leakage protection.

Long-time rating plug.

Battery module.

Lead-seal cover.

Power supplies

Portable test kit.

External 24 V DC power supply module (AD)

Test equipment

Hand-held test kit

The hand-held mini test kit may be used to:

- check operation of the control unit and the tripping and pole-opening system by sending a signal simulating a short-circuit
- supply power to the control units for settings via the keypad when the circuit breaker is open (Micrologic P control units).
Power source: standard LR6-AA battery.

Full function test kit

The test kit can be used alone or with a supporting personal computer.
The test kit without PC may be used to check:

- the mechanical operation of the circuit breaker
- the electrical continuity of the connection between the circuit breaker and the control unit
- operation of the control unit:
\square display of settings
\square automatic and manual tests on protection functions
\square test on the zone-selective interlocking (ZSI) function
\square inhibition of the earth-fault protection
\square inhibition of the thermal memory.
The test kit with PC offers in addition:
- the test report (software available on request).

External 24 V DC power-supply module (AD)

The external power-supply module makes it possible:

- to use the display even if the circuit breaker is open or not supplied (for the exact conditions of use, see the "electrical diagrams" part of this catalogue)
- to display fault currents after tripping
- to modify settings when the circuit breaker is open (OFF position)

An external 24 V DC power supply is required for installation with communication, whatever the type of trip unit.
This module is not designed to power on 24 V DC voltage releases and electric motor mechanism.
This module powers both the control unit and the M2C programmable contacts. We recommended using the AD power supply due to its low stray primary secondary capacitance. Good operation of the Micrologic control unit in noisy environment is not guaranteed with other power supplies.
If the COM option is used, a second dedicated power supply shall be used.

Characteristics

- Power supply AC-to-DC or DC-to-DC
- Output voltage: 24 V DC $\pm 5 \%$.
- Output current: 1 A.
- DIN rail or platine Fixing with Acti9 form factor
- Conducted emissions power line: class B per EN 61000-6-3.

24 V DC Universal Phaseo ${ }^{\text {TM }}$ ABL8 power supplies

The Universal Phaseo ABL8 RPS 24050 and ABL8 RPS 24030 power supplies can be connected phase-to-neutral or phase-to-phase.
They deliver a voltage that is precise to 3%, whatever the load and whatever the value of the AC supply, within the ranges 85 to 132 V AC and 170 to 550 V AC. The Universal Phaseo ABL8 powers:
\square circuit breaker communication module and interface.

Characteristics

- Power supply AC-to-DC.
- Network frequency: $50 / 60 \mathrm{~Hz}(\pm 5 \%)$.
- Output voltage: 24 V DC $\pm 3 \%$.
- Output current: 3 or 5 A.
- DIN rail or platine Fixing.

■ Conducted emissions power line: class B per EN 61000-6-3.
To assist cooling there must be sufficient clearance around the Universal range Phaseo power supplies:

- 50 mm above and below
- 10 mm on the side.

	ABL8RPSocoo	Module AD
Over Voltage Category	Cat I per VDE 0106-1	Cat IV per IEC 62477-1 (AC model) Cat III per IEC 62477-1 (DC model) Cat III per UL 61010-1
		3

Note: For the applications requiring an over voltage category higher than 2, a surge arrester shall be associated to ABL8 RPS power supplies. The iQuick20prd type 2 surge arrester is recommended.

Enerlin'X communication system

Products overview

Enerlin'X communication system provides access to status, electrical values and devices control using Ethernet and Modbus SL communication protocols.

Ethernet has become the universal link between switchboards, computers and communication devices inside the building. The large amount of information which can be transferred makes the connection of Enerlin'X digital system to hosted web services of Schneider Electric a reality. More advantages are offered to integrators thanks to configuration web pages available remotely or on the local Ethernet network.

Modbus SL is the most widely used communication protocol in industrial networks. It operates in master-slave mode. The devices (slaves) communicate one after the other with a gateway (master).

Enerlin'X communication system
 Products overview

Ethernet Gateway or Interface: routes an internal traffic (ULP or other protocole) to the Internet, the outgoing messages are coded with Modbus TCPIP protocol.

Server (Switchboard, Energy): routes the internal traffic to the Internet. Other complementary functions such as data logging and storage. Provides devices status and energy trends on internal web pages...

Communication

Communication wiring system

The wiring system is designed for low-voltage power switchboards. Installation requires no tools or special skills. The prefabricated wiring ensures both data transmission (Modbus protocol) and 24 V DC power distribution for the communications modules on the Micrologic control units.
(A) BCM ULP: Breaker Communication Module with ULP port
LI IFE: Ethernet interface
LV434001 or LV434002
(B) Micrologic control unit
$\begin{array}{lll}\text { (C) Breaker ULP cord } & 0.35 \mathrm{~m} & \text { LV434195 } \\ & 1.3 \mathrm{~m} & \text { LV434196 } \\ & 3 \mathrm{~m} & \text { LV434197 } \\ & 5 \mathrm{~m} & \text { LV434198 }\end{array}$
TRV00121
(E) Ethernet cable
(F) FDM121: Front Display Module
G FDM128: Front Display Module
LV434128
A9XMSB11
TRV00880
LV434063
(M) External 24 V DC power supply module
(N) IFM: Modbus-SL interface
LV434000
(0) Com'X 210
P ULP cable $\quad 0.3 \mathrm{~m} \quad$ TRV00803
TRV00806

0.6 m	TRV00806
1 m	TRV00810

(H) Smartlink
I. Acti9
JJ ULP line terminators

Communication Overview of functions

Four functional levels

The ComPact can be integrated into a Modbus communication environment. There are four possible functional levels that can be combined.

	Switchdisconnectors	Circuit breaker		
Status indications				
ON/OFF (O/F)	\bigcirc	S A	E	P
Spring charged CH	\bigcirc	S A	E	P
Ready to close	\bigcirc	S A	E	P
Fault-trip SDE	\bigcirc	S A	E	P
Connected / disconnected / test position	\bigcirc	S A	E	P
CE/CD/CT (I/O application module only)		S A	E	P
Controls				
MX open release	\bigcirc	S A	E	P
Closing release	\bigcirc	S A	E	P
Measurements				
Instantaneous measurement information	\bigcirc	A	E	P
Averaged measurement information	\bigcirc		E	P
Maximeter / minimeter	\bigcirc	A	E	P
Energy metering	\bigcirc		E	P
Demand for current and power	\bigcirc		E	P
Power quality	\bigcirc			
Operating assistance				
Protection and alarm settings		A	E	P
Histories		A	E	P
Time stamped event tables		A	E	P
Maintenance indicators		A	E	P

Modbus principle

The Modbus RS 485 (RTU protocol) system is an open bus on which communicating Modbus devices (ComPact NS with Modbus COM, Power Meter PM700, PM800, Sepam, Vigilohm, ComPact NSX, etc.) are installed. All types of PLCs and microcomputers may be connected to the bus.

Addresses

The Modbus communication parameters (address, baud rate, parity) are entered using the keypad on the Micrologic A, E, P, H. For a switch-disconnector, it is necessary to use the Electrical Asset Manager or RSU (Remote Setting Utility) Micrologic utility.

Number of devices

The maximum number of devices that may be connected to the Modbus bus depends on the type of device (ComPact with Modbus COM, PM700, PM800, Sepam, Vigilohm, ComPact NSX, etc.), the baud rate (19200 is recommended), the volume of data exchanged and the desired response time. The RS 485 physical layer offers up to 32 connection points on the bus (1 master, 31 slaves).
A fixed device requires only one connection point (communication module on the device). A drawout device uses two connection points (communication modules on the device and on the chassis).
The number must never exceed 31 fixed devices or 15 drawout devices.

Length of bus

The maximum recommended length for the Modbus bus is 1200 meters.

Bus power source

A 24 V DC power supply is required (less than 20 \% ripple, insulation class II).

Ethernet principle

Ethernet is a data link and physical layer protocol defined by IEEE 80210 and 100 Mbps specifications that connects computer or other Ethernet devices. Ethernet is an asynchronous Carrier Sense Multiple Access with Collision detection (referred as CSMA/CD) protocol. Carrier Sense means that the hosts can detect whether the medium (coaxial cable) is idle or busy. Multiple Access means that multiple hosts can be connected to the common medium. Collision Detection means a host detects whether its transmission has collided with the transmission of another host (or hosts).
IFE Ethernet interface can be connected to a PC or a laptop over Ethernet. The maximum length of Ethernet cable is 100 meters. IFE Ethernet interface + gateway provides a Modbus TCP/IP gateway over Ethernet to enable Modbus TCP communication from a Modbus TCP master to any Modbus slave devices connected to it. The maximum active Modbus TCP client connection is twelve.
IFE Ethernet interface has an embedded web server (web page).
The Modbus RS 485 (RTU protocol) system is an open bus on which communicating Modbus devices (ComPact NS with Modbus COM, Power Meter PM700, PM800, Sepam, Vigilohm, ComPact NSX, etc.) are installed. All types of PLCs and microcomputers may be connected to the bus.

S: Micrologic without measurement.
A: Micrologic with ammeter
E: Micrologic "Energy"
P: Micrologic "Power"
Note: see the description of the Micrologic control units for further details on protection and alarms, measurements, waveform capture, histories, logs and maintenance indicators.

Communication
 COM option in ComPact

All the ComPact devices can be fitted with the communication function thanks to the COM option. ComPact uses the Ethernet or Modbus communications protocol for full compatibility with the supervision management systems. Eco COM is limited to the transmission of metering data and status. It is not used to communicate controls.

BCM ULP.

I/O application module.

For fixed devices, the COM option is made up of:

- a BCM ULP module, installed behind the Micrologic control unit and supplied with its set of sensors (OF, SDE, PF and CH micro switches) its kit for connection to communicating voltage releases and its COM terminal block (inputs E1 to E6) - IFM, this module required for connection to the network, contains the Modbus address (1 to 99) declared by the user via the two dials in front. It automatically adapts (baud rate, parity) to the Modbus network in which it is installed.
Or
- IFE, the Ethernet interface for LV circuit breaker enables an intelligent modular unit (IMU), for example a ComPact NS circuit breaker to be connected to an Ethernet network. Each circuit breaker has its own IFE and a corresponding IP address.

For drawout devices, the COM option is made up of:

- a BCM ULP module, installed behind the Micrologic control unit and supplied with its set of sensors (OF, SDE, PF and CH micro switches) its kit for connection to communicating voltage releases and its COM terminal block (inputs E1 to E6). - IFM, this module required for connection to the network, contains the Modbus address (1 to 99) declared by the user via the two dials in front. It automatically adapts (baud rate, parity) to the Modbus network in which it is installed.
Or
- IFE, the Ethernet interface for LV circuit breaker enables an intelligent modular unit (IMU), for example a ComPact NS circuit breaker to be connected to an Ethernet network. Each circuit breaker has its own IFE and a corresponding IP address.
- I/O (Input/Output) application module for LV breaker, the I/O application module is delivered with withdrawable devices ordered with the COM option, for cradle management. It must be installed on a DIN rail near the device. It must be connected to the ULP system and to the position contacts (CD, CT, CE) that transmit the position of the device in the cradle.

BCM ULP module

This module is independent of the control unit. It receives and transmits information on the communication network. An infra-red link transmits data between the control unit and the communication module.
Consumption: $30 \mathrm{~mA}, 24 \mathrm{~V}$.

XF and MX1 communicating voltage releases

The XF and MX1 communicating voltage releases are equipped for connection to the "device" communication module.
The remote-tripping function (MX2 or MN) are independent of the communication option. They are not equipped for connection to the "device" communication module.

Electrical operated

Fixed device

Manually operated fixed device

A BCM ULP
B OF, SDE ... microswitches
C COM terminal block (E1 to E6)
D1 Manually operated device : no communicating voltage releases or MX or MN (in option)
D2 Electrically operated device MX or MN (closing release included in motor mechanism)
E CE, CD and CT contacts

Drawout devices

Manually operated withdrawable device

Electrically operated withdrawable device

[^1]

IFE interface, ref.: LV434001

IFE interface + gateway, ref.: LV434002

IFE interface, IFE interface + gateway description

Introduction

The IFE interface and IFE interface + gateway enable LV circuit breakers as MasterPact, ComPact NSX or PowerPact to be connected to an Ethernet network.

IFE interface: ref. LV434001

Provides an Ethernet access to a single LV circuit breaker.

Function

Interface - one circuit breaker is connected to the IFE interface via its ULP port.
IFE interface + gateway: ref. LV434002
Provides an Ethernet access to one or several LV circuit breakers.

Functions

- Interface - one circuit breaker is connected to the IFE interface via its ULP port.
- Gateway: several circuit breakers on a Modbus network are connected via the IFE interface + gateway master Modbus port.

IFE interface, IFE interface + gateway features

- Dual 10/100 Mbps Ethernet port for simple daisy chain connection. - Device profile web service for discovery of the IFE interface, IFE interface + gateway on the LAN.
■ ULP compliant for localization of the IFE interface in the switchboard.
- Ethernet interface for ComPact, MasterPact and PowerPact circuit breakers.

■ Gateway for Modbus-SL connected devices (IFE interface + gateway only).

- Embedded set-up web pages.
- Embedded monitoring web pages.
- Embedded control web pages.
- Built-in e-mail alarm notification.

Mounting

The IFE interface, IFE interface + gateway are DIN rail mounting devices. A stacking accessory enables the user to connect several IFMs (ULP to Modbus interfaces) to an IFE interface + gateway without additional wiring.

24 V DC power supply

The IFE interface, IFE interface + gateway must always be supplied with 24 V DC. The IFMs stacked to an IFE interface + gateway are supplied by the IFE interface + gateway, thus it is not necessary to supply them separately. It is recommended to use an UL listed and recognized limited voltage/limited current or a class 2 power supply with a 24 V DC, 3 A maximum.

IFE interface, IFE interface + gateway firmware update

The firmware can be updated using:

- FTP
- Ecoreach software.

Required circuit breaker communication modules

The connection to IFE interface or IFE interface + gateway requires a communication module embedded into the circuit breaker:

- ComPact NS: BCM ULP communication module.
- Withdrawable ComPact NS: BCM ULP and its respective I/O (Input/Output) application module. All connection configurations for ComPact NS require the breaker ULP cord. The insulated NSX cord is mandatory for system voltages greater than 480 V AC. When the second ULP RJ45 connector is not used, it must be closed with an ULP terminator (TRV00880).

Network communication interface

Characteristic		Value Type of interface module			
Transmission	Modbus RS485 RTU, RS485 serial connection				
Modbus TCP/IP Ethernet			$	$	Transfer rate: 9,600..19,200 Baud
:---					
Medium Double shielded twisted pair					
Impedance 120 Ω					

General characteristics	
Environmental characteristics	
Conforming to standards	UL 508, UL 60950, IEC 60950, 60947-6-2
Certification	cUIUs, GOST, FCC, CE
Ambient temperature	-20 to $+70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+158{ }^{\circ} \mathrm{F}\right)$
Relative humidity	5-85\%
Level of pollution	Level 3
Flame resistance	ULV0
Mechanical characteristics	
Shock resistance	$1000 \mathrm{~m} / \mathrm{s} 2$
Resistance to sinusoidal vibrations	$-5 \mathrm{~Hz}<\mathrm{f}<8.4 \mathrm{~Hz}$
Electrical characteristics	
Resistance to electromagnetic discharge	Conforming to IEC/EN 61000-4-3
Immunity to radiated fields	$10 \mathrm{~V} / \mathrm{m}$
Immunity to surges	Conforming to IEC/EN 61000-4-5
Consumption	120 mA at 24 V input
Physical characteristics	
Dimensions	$72 \times 105 \times 71 \mathrm{~mm}$ ($2.83 \times 4.13 \times 2.79 \mathrm{in}$. $)$
Mounting	DIN rail
Weight	$182.5 \mathrm{~g}(0.41 \mathrm{lb})$
Degree of protection of the installed IO	- On the front panel (wall mounted enclosure): IP4x
	- Connectors: IP2x
	- Other parts: IP3x
Connections	Screw type terminal blocks
Technical characteristics -24 V DC power supply	
Power supply type	Regulated switch type
Rated power	72 W
Input voltage	100-120 V AC for single phase
	200-500 V AC phase-to-phase
PFC filter	With IEC 61000-3-2
Output voltage	24 V DC
Power supply out current	3A
Note: it is recommended to use an UL listed/UL listed recognized limited voltage/Limited current or a class 2 power supply with a 24 V DC, 3 A maximum.	
IFE web page description	
Monitoring web page	
Real time data 67	\bigcirc
Device logging	\bigcirc
Control web page	
Single device control	\bigcirc
Diagnostics web page	
Statistics	\bigcirc
Device information	\bigcirc
IMU information	\bigcirc
Read device registers	\bigcirc
Communication check	\bigcirc
Maitenance web page	
Maintenance log	\bigcirc
Maintenance counters	\bigcirc
Setup web page	
Device localization/name	\bigcirc
Ethernet configuration (dual port)	\bigcirc
IP configuration	\bigcirc
Modbus TCP/IP filtering	\bigcirc
Serial port	\bigcirc
Date and time	\bigcirc
E-mail server configuration	\bigcirc
Alarms to be e-mailed	\bigcirc
Device list	\bigcirc
Device logging	\bigcirc
Device log export	\bigcirc
SNMP parameters	\bigcirc
Documentation links	\bigcirc
Preferences	\bigcirc
Advanced services control	\bigcirc
User accounts	\bigcirc
Web page access	\bigcirc

(A) Ethernet 1 and Ethernet 2 communication port.
[B] 24 V DC power supply terminal block.
[C] Ethernet communication LEDs:
yellow: 10 Mb
green: 100 Mb .
(D) Module status LED:
steady off: no power
steady green: device operational
steady red: major fault
flashing green: standby
flashing red: minor fault
flashing green/red: self-test.
E Network status LED:
steady off: no power/no valid IP address steady green: connected, valid IP address steady orange: default IP address steady red: duplicated IP address flashing green/red: self-test.Sealable transparent cover.
(G) QR code to product information.

H ULP status LED.
1 Test button (with cover closed).
JLocking pad.
\boxed{K} Modbus traffic status LED (LV434002 only).
LD Device name label.
M ULP ports.

IFM Modbus communication interface

IFM Modbus communication interface. Ref.: LV434000

Function

IFM - Modbus communication interface - is required for connecting
MasterPact or ComPact NS and NSX to Modbus network whenever the circuit breaker has an ULP port (Universal Logic Plug). The port is available on BCM ULP for MasterPact range and BSCM module for ComPact range. Note: IFM is defined as an IMU (Intelligent Modular Unit) in the ULP connection System documentation.

Once connected to IFM, the circuit breaker is considered as a slave by the Modbus master. Its electrical values, alarm status, open/close signals car be monitored or controlled by a Programmable Logic Controller or any other system.

Characteristics

ULP port
2 RJ45 sockets, internal parallel wiring.
■ Connection of a single circuit breaker (eventually via its I/O application module).

- An ULP line terminator or FDM121 display unit must be connected
to the second RJ45 ULP socket.
The RJ45 sockets deliver a 24 V DC supply fed from the Modbus socket.
Built-in test function, for checking the correct connection to the circuit breaker and FDM121 display unit.
Modbus slave port
- Modbus SL RJ45 port - RJ45 connector ensures fast and reliable wiring.
- Lateral socket, for Din-rail stackable connector.

Both top and lateral sockets are internally parallel wired.

- Multiple IFM can be stacked, thus sharing a common power supply and Modbus line without individual wiring.
- On the front face:
\square Modbus address setting (1 to 99): 2 coded rotary switches
\square Modbus locking pad: enables or disable the circuit breaker remote control and modification of IFM parameters.
■ Self adjusting communication format (Baud rate, parity).
24 V DC power supply
- Screw clamp terminal block
\square High electrical insulation between Modbus and 24 V DC connectors + separated lines ensure improved communication robustness.

A Modbus SL RJ45 port.
B 0-24 V DC power supply
C Modbus address switches.
D Modbus traffic LED.
E Modbus locking pad.

F ULP activity LED.
G Test button.
H Mechanical lock.
I ULP RJ45 connectors.
J Stacking accessory connection.

Technical characteristics

IFM Modbus communication interface

Dimensions	$18 \times 73 \times 90 \mathrm{~mm}$
Maximum number of stacked IFM	12
Degree of protection Part projecting beyond of the installed the escutcheon	IP4x
module Other module parts	IP3x
Connectors	IP2x
Operating temperature	$-25 \ldots+70^{\circ} \mathrm{C}$
Power supply voltage	$\begin{aligned} & 24 \text { V DC }-20 \% /+10 \%(19.2 \ldots 26.4 \mathrm{~V} \\ & \text { DC) } \end{aligned}$
Consumption Typical	$21 \mathrm{~mA} / 24 \mathrm{~V}$ DC at $20^{\circ} \mathrm{C}$
Maximum	$30 \mathrm{~mA} / 19.2 \mathrm{~V}$ DC at $60^{\circ} \mathrm{C}$
Certification	
CE	IEC/EN 60947-1
UL	UL 508 - Industrial Control Equipment
CSA	No. 142-M1987 - Process Control Equipment CAN/CSA C22.2 No. 0-M91 - General requirements - Canadian Electrical Code Part - CAN/CSA C22.2 No. 14-05 - Industrial Control Equipment

Recommended IFM installation
Staking IFM

Stacking accessories

Stacking an IFE interface + gateway with IFM

Connection of the IFE to a fixed or drawout ComPact NS

Connect the IFE to a fixed manual operated ComPact NS or circuit breaker using the breaker ULP cord

A IFE Ethernet interface for LV circuit breaker
(B) Breaker ULP cord

C Fixed terminal block
D BCM ULP communication module
E Fixed electrically operated circuit breaker

Connect the IFE to a drawout ComPact NS or circuit breaker using the breaker ULP cord

A IFE Ethernet interface for LV circuit breaker
B ULP cable
C Breaker ULP cord
D Circuit breaker disconnected position contact (CD)
E Circuit breaker cradle
F BCM ULP communication module
G Drawout circuit breaker
H) Drawout terminal block

I Circuit breaker connected position contact (CE)
J Circuit breaker test position contact (CT)
K I/O (Input/Output) application module for LV circuit breaker

Connection of the IFM to a fixed or drawout ComPact NS

Modbus interface module IFM

Functions

This module, required for connection to the network, contains the Modbus address (1 to 99) declared by the user via the two dials in front. It automatically adapts (baud rate, parity) to the Modbus network in which it is installed.
It is equipped with a lock-out switch to enable or disable operations involving writing to Micrologic, i.e. reset, counter reset, setting modifications, device opening and closing commands, etc.
There is a built-in test function to check the connections of the Modbus interface module with the Micrologic and FDM121 display unit.

Mounting

The module is mounted on a DIN rail. A number of modules may be clipped one next to the other. For this, a stacking accessory is available for fast clip-connection of both the Modbus link and the 24 V DC supply.
The Modbus interface module supplies 24 V DC to the corresponding Micrologic, FDM121 display and BSCM module. Module consumption is $60 \mathrm{~mA} / 24 \mathrm{~V}$ DC.

Mounting with stacking accessory.

(A) Five-point Modbus and 24 V DC connector

B Two Modbus address dials (1 to 99)
C) Modbus traffic LED
(D) Lock-out to disable writing to the NSX

E Test LED
F Test button
G Two connectors for RJ45 cable

A IFM Ethernet interface for LV circuit breaker
B Breaker ULP cord
C Fixed terminal block
D BCM ULP communication module
E Fixed electrically operated circuit breaker

Connect the IFM to a drawout ComPact NS or circuit breaker using the breaker ULP cord

A IFM Ethernet interface for LV circuit breaker
B ULP cable
F BCM ULP communication module
C. Breaker ULP cord

D Circuit breaker disconnected position contact (CD)
E Circuit breaker cradle

G Drawout circuit breaker
H) Drawout terminal block

I Circuit breaker connected position contact (CE)
J Circuit breaker test position contact (CT)
K I/O (Input/Output) application module for LV circuit breaker

I/O application module

I/O application module description

Description

The I/O (Input/Output) application module for LV breaker is part of an ULP system with built-in functionalities and applications to enhance the application needs. The ULP system architecture can be built without any restrictions using the wide range of circuit breakers.
The I/O application module is compliant with the ULP system specifications.
Two I/O application module can be connected in the same ULP network.
The ranges of LV circuit breakers enhanced by the I/O application module are:

- MasterPact
- ComPact NS1600b-3200
- ComPact NS630b-1600
- ComPact NSX100-630 A.

I/O (Input/Output) application module for LV breaker resources

The I/O application module module ressources are:

- 6 digital inputs that are self powered for either NO and NC dry contact or pulse counter
■ 3 digital outputs that are bistable relay (5 A maximum)
- 1 analog input for Pt100 temperature sensor.

Pre-defined applications

Pre-defined application adds new functions to the IMU in a simple way: ■ selection by the application rotary switch on the I/O application module, defining the application with pre-defined input/output assignment and wiring diagram. - no additional setting with the Ecoreach software required.

The resources not assigned to the pre-defined application are free for additional user-defined applications:

- cradle management
- breaker operation
- light and load control
- custom.

User-defined applications

User-defined applications are processed by the I/O application module in addition to the pre-defined application selected.
The user-defined applications are available depending on:

- the pre-defined application selected
- the I/O application module resources (inputs and outputs) not used by the application.
The resources required by user-defined applications are assigned using the Ecoreach software:
- protection
- control
- energy management
- monitoring.

Mounting

The I/O application module is a DIN rail mounting device.

Application rotary switch

The application rotary switch enables the selection of the pre-defined application.
It has 9 positions and each position is assigned to a pre-defined application.
The factory set position of the switch is pre-defined application 1.

Setting locking pad

The setting locking pad on the front panel of the I/O application module enables the setting of the I/O application module by the Ecoreach software.

General characteristics	
Environmental characteristics	
Conforming to standards	UL 508, UL 60950, IED 60950, 60947-6-2
Certification	cUIUs, GOST, FCC, CE
Ambient temperature	-20 to $+70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
Relative humidity	5-85 \%
Level of pollution	Level 3
Flame resistance	ULVO
Mechanical characteristics	
Shock resistance	$1000 \mathrm{~m} / \mathrm{s} 2$
Resistance to sinusoidal vibrations	$-5 \mathrm{~Hz}<\mathrm{f}<8.4 \mathrm{~Hz}$
Electrical characteristics	
Resistance to electromagnetic discharge	Conforming to IEC/EN 61000-4-3
Immunity to radiated fields	$10 \mathrm{~V} / \mathrm{m}$
Immunity to surges	Conforming to IEC/EN 61000-4-5
Consumption	165 mA
Physical characteristics	
Dimensions	$71.7 \times 116 \times 70.6 \mathrm{~mm}$ ($2.83 \times 4.56 \times 2.78 \mathrm{in}$. $)$
Mounting	DIN rail
Weight	$229.5 \mathrm{~g}(0.51 \mathrm{lb})$
Degree of protection of the installed I/O application module	On the front panel (wall mounted enclosure): IP4x IO parts: IP3x Connectors: IP2x
Connections	Screw type terminal blocks
Technical characteristics - 24 V DC power supply	
Power supply type	Regulated switch type
Rated power	72 W
Input voltage	100-120 V AC for single phase
	200-500 V AC phase-to-phase
PFC filter	With IEC 61000-3-2
Output voltage	24 V DC
Power supply out current	3 A
Note: it is recommended to use an UL listed/UL listed recognized limited voltage/Limited current or a class 2 power supply with a 24 V DC, 3 A maximum.	
Digital inputs	
Digital input type	Self powered digital input with current limitations as per IEC 61131-2 type 2 standards (7 mA)
Input limit values at state 1 (close)	19.8-25.2 V DC, 6.1-8.8 mA
Input limit values at state 0 (open)	0-19.8 V DC, 0 mA
Maximum cable length	10 m (33 ft)
Note: for a length greater than a shielded twisted cable. The s application module.	$0 \mathrm{~m}(33 \mathrm{ft})$ and up to $300 \mathrm{~m}(1,000 \mathrm{ft})$, it is mandatory to use ield cable is connected to the I/O functional ground of the I/O
Digital outputs	
Digital output type	Bistable relay
Rated load	5 A at 250 VAC
Rated carry current	5A
Maximum switching voltage	380 V AC, 125 V DC
Maximum switch current	5 A
Maximum switching power	1250 VA, 150 W
Minimum permissible load	10 mA at 5 V DC
Contact resistance	$30 \mathrm{~m} \Omega$
Maximum operating	18000 operations/hr (Mechanical)
frequency	1800 operations/hr (Electrical)
Digital output relay protection by an external fuse	External fuse of 5 A or less
Maximum cable length	10 m (33 ft)
Analog inputs	
The I/O application module analog input can be connected to a Pt100 temperature sensor	
Range	-30 to $200{ }^{\circ} \mathrm{C} \quad-22$ to $392{ }^{\circ} \mathrm{F}$
Accuracy	$\pm 2^{\circ} \mathrm{C}$ from -30 to $20^{\circ} \mathrm{C} \quad \pm 3.6{ }^{\circ} \mathrm{F}$ from -22 to $68{ }^{\circ} \mathrm{F}$
	$\pm 1^{\circ} \mathrm{C}$ from 20 to $140{ }^{\circ} \mathrm{C} \quad \pm 1.8{ }^{\circ} \mathrm{F}$ from 68 to $284{ }^{\circ} \mathrm{F}$
	$\pm 2{ }^{\circ} \mathrm{C}$ from 140 to $200{ }^{\circ} \mathrm{C} \quad \pm 3.6{ }^{\circ} \mathrm{F}$ from 284 to $392{ }^{\circ} \mathrm{F}$
Refresh interval	5 s

A 24 V DC power supply terminal block
B Digital input terminal block: 6 inputs, 3 commons and 1 shield.
[C] 6 input status LEDs.
(Analog input status LED.
E 3 output status LEDs.
(F) I/O application module identification labels.
(G) Sealable transparent cover.

H Analog input terminal block.Digital output terminal blocks.
J
ULP status LED.
K Test/reset button (accessible with cover closed)Setting locking pad.
(M) Application rotary switch: 1 to 9 .

N Switch for I/O addressing (I/O 1 or I/O 2).
(0) ULP connectors.
[1] 250 V AC OVC 2 according IEC/EN 60947-2 For OVC 3 and 4 surge arresters are required on the polarizing voltage of the output contacts.

Electrical Asset Manager Configuration Engineering tool

Introduction

Electrical Asset Manager is a software application that helps the user to manage a project as part of designing, testing, site commissioning, and maintenance of the project life cycle.
It enables the user to prepare the settings of the devices offline (without connecting to the device) and configure them when connected with the devices.
Also it provides lot of other value added features for the user to manage the project such as, safe repository in cloud, attach artifacts to each device or at the project level, organize devices in switchboard wise, manage a hierarchical structure of the installation etc.

Compatible devices (configuration and device management)

Electrical Asset Manager is compatible with the following devices:

- ComPact NSX100-630 (IEC)
- PowerPactTM (UL) circuit breaker
- ComPact NS630b-3200 (IEC)
- MasterPact (IEC and UL) circuit breaker
- Acti9 Smartlink.
- Compatible devices (Device Management in the project)
- Switch disconnectors (ComPact NSX, MasterPact \& PowerPact Family)
- Third party devices

References:

Electrical Asset Manager software package can be downloaded from our website www.schneider-electric.com.

Features

Electrical Asset Manager supersedes the Schneider Electric customer engineering tools such as Remote setting Utility (RSU) and Remote Control Utility (RCU) with additional features.
Electrical Asset Manager supports the connection of Schneider Electric communicable devices to:

- create projects by device discovery, selection of devices, and import Bill of Material (BOM)
- monitor the status of protection and I/O status
- read information (alarms, measurements, parameters)
- check protection selectivity between two devices
- upload and download of configuration or settings in batch mode to multiple devices.
- carry out commands and tests
- generate and print device settings report and communication test report
- manage multiple devices with electrical and communication hierarchy model
- manage artifacts (project documents)
- check consistency in settings between devices on a communication network
- compare configuration settings between PC and device (online)

■ download latest firmware.
Electrical Asset Manager enables the user to avail the advanced features of the software once the project is saved in Schneider Electric cloud.

Electrical Asset Manager Configuration Engineering tool

Functions

Offline Mode

A project can be built in offline mode through 2 different ways:

- through BOM file import
- through Device Selection.

Additionally, the user can open an existing project and modify the settings offline. The user can do the selectivity curve check and firmware compatibility check for devices in the project.

Online Mode

A project can be built in online mode through device discovery also other than the methods possible through offline method.
Once the project is built, the following functions can be performed in addition to the functions available in offline mode:

- compare the device parameters with project parameters
- load parameters from project to the device and vice versa
- firmware downloads to the device
- monitor the measurement, maintenance, device status and I/O status
- control functions.

User Interface

Electrical Asset Manager software provides fast direct access to the project and the devices in the project through different tabs.

- Project: to provide the project information including customer details, project references and to add project artifacts (documents related to the project).
- Configuration: to build up the tree structure of the project architecture ; to have a table view of the devices added in the project ; to set the parameters of the devices ; to transfer the device settings ; to view the tripping curves; to attach device artifacts and to download the latest firmware, to do the communication test for all the devices and generate the test report.
- Monitoring: this allows the user to monitor the real time values of different devices through different sub tabs namely Monitoring, Logs and Control.
- Reports: report tab allows you to generate and print a report of the project settings from the report tab. The user details and project characteristics are automatically filled with the details entered in the Project page.

Motor protection

Overview of solutions

The circuit breakers presented here provide protection against short circuits and are suitable for isolation as defined by standard IEC 60947-2. For complete protection of the motor and its control device, overload protection may be provided by either the circuit breaker or a separate Schneider Electric thermal relay. The control device may be of the direct online type (with or without reversing) or of the "star-delta" type. Combinations are governed by standard IEC 60947-4.1.

Motor protection up to 750 kW

Motor rating (kW)	$160 \ldots 750$
ComPact	NS630b to 1600
Breaking	N 50
capacity (kA rms)	H 70
380/415 V	L 150

General circuit breaker characteristics

page A-12
ComPact NS630b to 1600 circuit breakers equipped with Micrologic control units are the same as those for distribution systems.

Accompanying control units

Micrologic electronic control units may be used on all ComPact NS630b to 1600 circuit breakers.
Micrologic 2.0 A and 5.0 A electronic control units provide protection against short-circuits and overloads. Micrologic 7.0 A provides the same protection functions, plus earth-leakage protection.
Protection coordination (as defined by IEC 60947-4)
Whatever the power of the motor, the coordination between the circuit breaker, contactor and relay can be of either type 1 or 2.
Selection depends on operational requirements concerning continuity of service and the technical skills of servicing personnel.
All type 2 have been tested under the conditions defined by standards and they are certified ASEFA/LOVAG.
Selection of a trip unit or Micrologic control unit


```
Earth-leakage protection is obtained by:
■ installing a Micrologic 7.0 A control unit (ComPact NS630b to 3200).
\square using a Vigirex relay and separate sensors (all ComPact circuit breakers).
```


Circuit breakers equipped with a control unit offering integrated

 earth-leakage protection and an external rectangular sensor
Rated current (A)

General circuit breaker characteristics
ComPact NS630b to 3200 circuit breakers are presented in the "Protection of distribution systems" section.
Accompanying control units
Micrologic 7.0 A electronic control units offer earth-leakage protection as standard.
Earth-leakage protection using a Vigirex relay
Earth-leakage relay \quad Separate toroids \quad Rectangular sensors

ComPact circuit breaker + Vigirex relay combination
Vigirex relays may be used to add external earth-leakage protection to ComPact NS circuit breakers. The circuit breakers must be equipped with an MN or MX voltage release. Vigirex relays are very useful when special time-delay or tripping-threshold values are required, or when there are major installation constraints (circuit breaker already installed and connected, limited space available, etc.).

Vigirex-relay characteristics:

- rectangular sensors up to 3200 A
- 50/60/400 Hz distribution systems.

Options:

- trip alarm by a fail-safe contact
- pre-alarm LED and contact, etc.

Compliance with standards:

- IEC 60947-2, annex M
- IEC/EN 60755: general requirements for residual current operated protective devices
- IEC/EN 6100-4-2 to 4-6: immunity tests
- CISPR11: radio-frequency radiated and conducted emission tests

■ UL1053 and CSA22.2 No. 144 for RH10, RH21 and RH99 relays at supply voltages up to and including 220/240 V.

Control and isolation Overview of solutions

Control and isolation
 Overview of solutions

ComPact switch-disconnectors are used to control and isolate electrical distribution circuits. In addition to these basic functions, other functions for safety, remote control and convenience include:
■ earth-leakage protection

- auxiliary MN/MX releases
- remote operation.

ComPact switch-disconnectors may be interlocked with another ComPact switch-disconnector or circuit breaker to constitute a source-changeover system.

ComPact NS1600NA manual switch-disconnector.

ComPact NS1600NA electrical switch-disconnector.

Control and disconnection
 ComPact NS630bNA to 1600NA switch-disconnectors

```
Installation standards require upstream protection.
```


ComPact NS1600NA manual switch-disconnector.

ComPact NS1600NA electrical switch-disconnector.

ComPact switch-disconnectors

Number of poles

Control	manual		toggle	
			direct or extended rotary handle	
	electric			
Connections	fixed			front connection
				rear connection
	withdrawable (on chassis)			front connection
				rear connection
Electrical characteristics as per IEC 60947-3 and EN 60947-3				
Conventional thermal current (A)		Ith	$60^{\circ} \mathrm{C}$	
Rated insulation voltage (V)		Ui		
Rated impulse withstand voltage (kV)		Uimp		
Rated operational voltage (V)		Ue	AC 50/60	
Rated operational current		le	AC $50 / 60 \mathrm{~Hz}$	
				220/240 V
				380/415 V
				440/480 V
				500/525 V
				660/690 V
Short-circuit making capacity		Icm	(kA peak)	
Short-time withstand current		Icw	(kA rms)	0.5 s 20 s
Suitability for isolation				
Durability (C-O cycles)	mechanical			
	electrical	AC	440 V	AC23A/ln
Positive contact indication				
Pollution degree				
Protection				
Add-on earth-leakage protection			combination with Vigirex relay	
Additional indication and control auxiliaries				
Indication contacts				
Voltage releases		MX shunt release		
		MN undervoltage release		

Remote communication by bus
Device status indications (communicating auxiliary contacts)
Device remote operation (communicating motor mechanism)

Installation	
Accessories	terminal extensions and spreaders
	terminal shields and interphase barriers
	escutcheons
Dimensions (mm)	fixed 3P
W $\times \mathrm{H} \times \mathrm{D}$	4P
Weight (kg)	fixed 3P
	4P

Source-changeover system (see section "on source-changeover systems") Manual source-changeover systems, remote-operated and automatic

Control and disconnection

ComPact NS630bNA to 1600NA switch-disconnectors

NS630bNA	NS800NA	NS1000NA	NS1250NA	NS1600NA
3, 4	3,4	3,4	3,4	3,4
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
630	800	1000	1250	1600
800	800	800	800	800
8	8	8	8	8
690	690	690	690	690
AC23A	AC23A	AC23A	AC23A	AC23A
630	800	1000	1250	1600
630	800	1000	1250	1600
630	800	1000	1250	1600
630	800	1000	1250	1600
630	800	1000	1250	1600
52	52	52	52	52
25	25	25	25	25
4	4	4	4	4
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10000	10000	10000	10000	10000
2000	2000	2000	2000	1000
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	3	3	3	3

O

0
\bigcirc
\bigcirc
\bigcirc
0
\bigcirc
\bigcirc
0
$327 \times 210 \times 147$
$327 \times 280 \times 147$
14
18
\bigcirc

Control and disconnection
 ComPact NS1600bNA to 3200NA switch-disconnectors

Installation standards require upstream protection. However, ComPact NS1600b to 3200NA switch-disconnectors are self-protected for all currents higher than 130 kA peak.

ComPact NS2000NA.

ComPact switch-disconnectors
Number of poles

Control	manual	toggle direct or extended rotary handle
	electric	
Connections	fixed	front connection rear connection
	withdrawable (on chassis)	front connection
		rear connection

Electrical characteristics as per IEC 60947-3 and EN 60947-3

Conventional thermal current (A)	Ith	$60^{\circ} \mathrm{C}$
Rated insulation voltage (V)	Ui	
Rated impulse withstand voltage (kV)	Uimp	
Rated operational voltage (V)	Ue	AC $50 / 60 \mathrm{~Hz}$
Rated operational current	le	AC $50 / 60 \mathrm{~Hz}$

220/240 V
$380 / 415 \mathrm{~V}$
440/480 V
$500 / 525 \mathrm{~V}$
660/690 V

Short-circuit making capacity	Icm	(kA peak)
Short-time withstand current	Icw	(kA rms) 3 s

Integrated instantaneous protection (kA peak ± 10 \%)
Suitability for isolation

Durability (C-O cycles)	mechanical	
	electrical AC 440 V	AC23A/ln

Positive contact indication
Pollution degree
Protection
Add-on earth-leakage protection
combination with Vigirex relay

Additional indication and control auxiliaries		
Indication contacts		
Voltage releases	MX shunt release	
	MN undervoltage release	
Installation	escutcheons	
Accessories	fixed	$3 P$
Dimensions (mm)		4 Pixed
WxHxD		$3 P$
Weight (kg)		4 P

Source-changeover system (see section "on source-changeover systems")
Manual source-changeover systems, remote-operated and automatic

Control and disconnection

ComPact NS1600bNA to 3200NA switch-disconnectors

NS1600bNA	NS2000NA	NS2500NA	NS3200NA
3,4	3,4	3,4	3,4
\bigcirc	\bigcirc	\bigcirc	\bigcirc
-	-	-	-
-	-	-	-
\bigcirc	\bigcirc	\bigcirc	\bigcirc
-	-	-	-
-	-	-	-
-	-	-	-
1600	2000	2500	3200
800	800	800	800
8	8	8	8
690	690	690	690
AC23A	AC23A	AC23A	AC23A
1600	2000	2500	3200
1600	2000	2500	3200
1600	2000	2500	3200
1600	2000	2500	3200
1600	2000	2500	3200
135	135	135	135
32	32	32	32
130	130	130	130
\bigcirc	\bigcirc	\bigcirc	\bigcirc
6000	6000	6000	6000
1000	1000	1000	1000
\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	3	3	3

0
○
\bigcirc
\bigcirc

0
$350 \times 420 \times 160$
$350 \times 535 \times 160$
23
36

Source-changeover systems

Presentation

Some installations use two supply sources to counter the temporary loss of the main supply.
A source-changeover system is required to safely switch between the two sources.
The replacement source can be a generator set or another network.

Manual source-changeover system or MTSE (Manual Transfer Switching Equipment)

The simplest way to switch the load. It is controlled manually by an operator. The time required to switch from the S1 source to S2 source is variable.
System
2 or 3 mechanically interlocked circuit breakers or 2 switch-disconnectors.
Applications
Small commercial buildings and small and medium industrial activities where the need for continuity of service is significant but not a priority.

Automatic source-changeover system or ATSE (Automatic Transfer Switching Equipment)

An automatic controller may be added to a remote operated source-changeover system. It is possible to automatically control source transfer according to programmed (dedicated controllers) or programmable (PLC) operating modes. These solutions ensure optimum energy management.
The time required to switch from the S 1 source to S 2 source is fixed.
System
2 or 3 circuit breakers linked by an electrical interlocking system. A mechanical interlocking system protects also against incorrect manual operations, with an automatic control system (dedicated controllers).
Applications
Large infrastructures, industry, critical buildings \& process where the continuity of service is a priority.

Remote source-changeover system or RTSE (Remote Transfer Switching Equipment)

In this case, no direct human intervention is required. The time required to switch from the S1 source to S 2 source is fixed.
System
2 or 3 circuit breakers linked by an electrical interlocking system. A mechanical interlocking system protects also against incorrect manual operations. In this case is necessary to add a PLC controller not dedicated for source-changeover application.
Applications
Industry \& Infrastructure where continuity of service requirements are meaningful but not a priority.

Source-changeover systems Manual source-changeover systems

A manual source-changeover system can be installed on two to three manually-operated circuit breakers or switchdisconnectors. Interlocking is mechanical. Interlocks prevent connection to both sources at the same time, even momentarily.

Interlocking of two devices with rotary handles

The rotary handles are padlocked with the devices in the OFF position.
The mechanism inhibits the two devices being closed at the same time, but does allow for both to be open (OFF) at the same time.

Combinations of "Normal" and "Replacement" devices

All ComPact NS630b to 1600 circuit breakers and switch-disconnectors with rotary handles can be interlocked.
Interlocking of a ComPact NS630b with a ComPact NS630b to 1600 is not possible.
Interlocking of a number of devices using keylocks
(captive keys)
Interlocking uses two identical keylocks with a single key. This solution enables interlocking between two devices that are physically distant or that have significantly different characteristics, for example between a low and a medium-voltage device, or between ComPact NS circuit breakers and switch-disconnectors.
A system of wall-mounted units with captive keys makes possible a large number of combinations between many devices.

Combinations of Normal and Replacement devices

All ComPact NS630b to 1600 circuit breakers and switch-disconnectors with rotary handles or motor mechanisms can be interlocked.

Interlocking of two ComPact NS630b to 1600 devices using connecting rods

The two devices must be mounted one above the other (either 2 fixed or 2 withdrawable/drawout devices).

Installation

This function requires:

- an adaptation fixture on the right side of each circuit breaker or switch-disconnector - a set of connecting rods with no-slip adjustments.

The adaptation fixtures, connecting rods and circuit breakers or switchdisconnectors are supplied separately, ready for assembly by the customer. The maximum vertical distance between the fixing planes is 900 mm .
Possible combinations of "S1" and "S2" source circuit breakers Combinaison are possible between ComPact devices and between ComPact NS devices with MasterPact MTZ devices.
Interlocking of two ComPact NS630b to 1600 devices using cables
For cable interlocking, the circuit breakers may be mounted one above the other or side-by-side.
The interlocked devices may be fixed or drawout, three-pole or four-pole, and have different ratings and sizes.

Installation

This function requires:

- an adaptation fixture on the right side of each device
- a set of cables with no-slip adjustments.

The maximum distance between the fixing planes (vertical or horizontal) is 2000 mm .

Possible combinations of "S1" and "S2" source
circuit breakers

| Source "S1" | Source "S2" | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | NS630b to | NT06 to | NW08 to | NW40b to |
| | NS1600 | NT16 | NW40 | NW63 |
| NS630b to NS1600 | - | O | O | - |

Interlocking with keylocks.

Interlocking of two devices with rotary handles.

Interlocking with connecting rods.

Interlocking with cables.

Electrical interlocking

IVE unit

Electrical interlocking is used with a mechanical interlocking system. Morover, the relays controlling the closing order to the "S1" and "S2" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

Electrical interlocking is carried out by an electrical control device.
For ComPact NS630b to NS1600, this function can be implemented in one of two ways:

- using the IVE unit
- by an electrician based on the diagrams in accordance with the chapter
"Electric diagrams" source-changeover system.
Characteristics of the IVE unit
- External connection terminal block:
\square inputs: circuit breaker control signals
\square outputs: status of the SDE contacts on the "S1" and "S2" source circuit breakers.
- 2 connectors for the two "S1" and "S2" source circuit breakers:
\square inputs:
- status of the OF contacts on each circuit breaker (ON or OFF)
- status of the SDE contacts on the "S1" and "S2" source circuit breakers
\square outputs: power supply for operating mechanisms.
- Control voltage:
- 24 to 250 V DC
$\square 48$ to $415 \mathrm{~V} 50 / 60 \mathrm{~Hz}-440 \mathrm{~V} 60 \mathrm{~Hz}$.
The IVE unit control voltage must be same as that of the circuit breaker operating mechanisms.

IVE unit.
For ComPact NS630b to NS1600, each circuit breaker must be equipped with:

- a motor mechanism
- an available OF contact
- a CE connected-position contact (carriage switch) on withdrawable circuit breakers - an SDE contact.

Standard configuration for ComPact NS

| Types of mechanical
 interlocking | Possible
 combinations
 2 devices | Typical electrical | Diagram
 no. |
| :--- | :--- | :--- | :--- | :--- |

[^2]
Electrical interlocking Remote-operated systems

Source-changeover system with a controller
In this case, changeovers between the "Normal" and "Replacement" sources under predefined conditions are initiated by a Schneider Electric controller.

Control plate

Controller.

Switching between sources can be automated by adding:

A ACP control plate
B BA or UA controller, or an electrical system provided by the installer for NS630b to 1600. Electrical system example: part no. 51156904 and 51156904 in the source-changeover system catalogue.

Interlocking by rods.

Interlocking by cables.

Source-changeover systems

Associated controllers

By combining a remote-operated source-changeover system with an integrated BA or UA automatic controller, it is possible to automatically control source transfer according to user-selected sequences. These controllers can be used on source-changeover systems comprising 2 circuit breakers. For source-changeover systems comprising 3 circuit breakers, the automatic control diagram must be prepared by the installer as a complement to to diagrams provided in the "electrical diagrams" section of this catalogue.

BA controller.

UA controller
[1] For example, 220 V single-phase or 220 V three-phase. [2] The controller is powered by the ACP control plate. The same voltage must be used for the ACP plate, the IVE unit and the operating mechanisms. If this voltage is the same as the source voltage, then the "Normal" and "Replacement" sources can be used directly for the power supply. If not, an isolation transformer must be used.

Controller	BA	UA
4-position switch		
Compatible circuit breaker	All ComPact NS circuit breaker	
Automatic operation	\bigcirc	\bigcirc
Forced operation on "Normal" source	\bigcirc	\bigcirc
Forced operation on "Replacement" source	\bigcirc	\bigcirc
Stop (both Normal and Replacement sources OFF)	\bigcirc	\bigcirc
Automatic operation		
Monitoring of the "Normal" source and automatic transfer	\bigcirc	\bigcirc
Generator set startup control		\bigcirc
Delayed shutdown (adjustable) of engine generator set		\bigcirc
Load shedding and reconnection of non-priority circuits		\bigcirc
Transfer to the "Replacement" source if one of the phas of the "Normal" phase is absent		\bigcirc

Test

By opening the P25M circuit breaker supplying
the controller
By pressing the test button on the front of the controller

Indications

Circuit breaker status indication on the front of the controller: on, off, fault tripO

O

Selection of type of "Normal" source
(single-phase or three-phase) ${ }^{[1]}$
Voluntary transfer to "Replacement" source
$0 \quad 0$
(e.g. energy-management commands)

During peak-tariff periods (energy-management
commands) forced operation on "Normal" source if
"Replacement" source not operational
Additional control contact (not in controller).
$0 \quad 0$
Transfer to "Replacement" source only if contact closed (e.g. used to test the frequency of UR)

Setting of maximum startup time for the replacement source

Power supply

Control voltages ${ }^{[2]}$	110 V	\bigcirc	\bigcirc
	220 to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	\bigcirc	\bigcirc
	380 to $415 \mathrm{~V} \mathrm{50/60Hz}$	\bigcirc	\bigcirc
	440 V 60 Hz	\bigcirc	\bigcirc
Operating thresholds			
Undervoltage	$0.35 \mathrm{Un} \leqslant$ voltage $\leqslant 0.7 \mathrm{Un} \bigcirc$	\bigcirc	
Phase failure	$0.5 \mathrm{Un} \leqslant$ voltage $\leqslant 0.7 \mathrm{Un}$	\bigcirc	
Voltage presence	voltage $\geqslant 0.85 \mathrm{Un}$	\bigcirc	\bigcirc

Electrical and mechanical accessories
 ComPact NS630b to 1600 (fixed version)

A1	Terminal extension for cables with lugs
A2	Vertical connection adapter
A3	Spreader
B)	Interphase barriers
C1	Spreader
C2	Rear connectors
D1	Sealable terminal shield
D2	Connection kit for connectors

E1	Auxiliary contact
E2	Voltage release
E3	Communications module
FF	Escutcheon
C1	I/O
G2	IFE
C3	IFM
G4	FDM121

[^3]
Electrical and mechanical accessories ComPact NS630b to 1600 (withdrawable version)

A1
A2
A3
C1
C2
D1
D2
D3
D4
D5

Terminal extension for cables with lugs
Vertical connection adapter
Spreader
Interphase barriers
Spreader
Rear connectors
I/O
IFE
D3 IFM
D4 FDM121
D5 FDM128

Electrical and mechanical accessories ComPact NS630b to 1600

The withdrawable configuration makes it possible to:

- extract and/or rapidly replace the circuit breaker without having to touch connections; - allow for the addition of future circuits at a later date.

Manually operated fixed ComPact NS 800.

Electrically operated fixed ComPact NS 1600.

Electrically operated withdrawable ComPact NS800H
\square

Installation

Fixed configuration
ComPact NS630b to 1600 circuit breakers may be installed vertically, horizontally or flat on their back.

Withdrawable configuration

ComPact NS 630b to 1600 circuit breakers should be installed vertically only.

Mounting on a backplate.

Device on mounting plate.

Rear mounting on rails.

Device on rails.

Electrical and mechanical accessories ComPact NS630b to 1600

The device may be in one of four positions on the chassis:

- connected position. The power circuits and auxiliary contacts are all connected
- test position. The power circuits are disconnected. The auxiliary contacts are still connected and the device can be operated electrically
- disconnected position. The power circuits and auxiliary contacts are all disconnected, however the device is still mounted on the chassis. It can be operated manually (ON, OFF, "push to trip").
- removed position. All circuits are disconnected. The device simply rests on the chassis rails and can be removed.

The multifunctional chassis for ComPact NS630b to 1600 devices is particularly suited for incoming circuit breakers. Features include:

- device connection and disconnection through a door, using a crank that can be stored in the chassis
\square three positions (connected, test and disconnected) that are indicated:
\square locally by a position indicator
\square remotely by carriage switches (3 for the connected position, 2 for the disconnected position and 1 for the test position)
- circuit breaker ON/OFF commands through a switchboard front panel.

Locking

There are extensive locking possibilities:

- chassis locking in connected, disconnected and test positions using three padlocks and two keylocks, on the switchboard front panel
- door interlock (inhibits door opening with breaker in connected position)
- racking interlock (inhibits racking with door open)
\square locking in each of the connected, disconnected and test positions during device connection or disconnection. Continuation to the next position requires pressing a release button to free the crank.

Other safety function

Mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics.

A Mismatch protection
B Door interlock
C Racking interlock
D Keylock locking
E Padlock locking
F Position indicator
G Chassis front plate (accessible with cubicle door closed)
H Crank entry
I Reset button
J Crank storage

Electrical and mechanical accessories
 ComPact NS630b to 1600

Types of connection

Simply turn a horizontal rear connector 90° to make it a vertical connector.

Withdrawable device

Front connections

Connection by:
bars cables with lugs

To ensure performance and isolation, depending on the type of circuit breaker ($N, H, L, L B$) and type of connection, certain isolation accessories are mandatory.

Connections accessories

[2]
Spreaders

Safety shutters with
locking
by padlocks (IP20)

| Arc chute screen |
| :--- | :--- | :--- |

[^4]
Electrical and mechanical accessories
 ComPact NS630b to 1600

A

Front connection of fixed devices

Bars
Fixed, front-connection ComPact NS630b to 1600 devices are equipped with terminals comprising captive screws for direct connection of bars.
Other connection possibilities for bars include vertical-connection adapters for edgewise bars and spreaders to increase the pole pitch to 95 mm . If the vertical connection adapters are front oriented, then it is mandatory to install the arc chute screen in order to comply with the safety clearances.

Vertical-connection adapters.
Bare cables
Special sets of connectors and terminal shields may be used to connect up to four $240 \mathrm{~mm}^{2}$ copper or aluminium cables for each phase. Bare cable connection is possible for ratings up to and including 1250 A .

Cable lug adapters are combined with the vertical-connection adapters.
One to four cables with crimped lugs ($\leqslant 300 \mathrm{~mm}^{2}$) may be connected.
To ensure stability, spacers must be positioned between the terminal extensions. If the cable lug adapters are installed over the top of the arc chute chambers, then it is mandatory to install the arc chute screen in order to comply with the safety clearances.

Cable lug adapters.

Electrical and mechanical accessories ComPact NS630b to 1600

Rear connection of fixed devices

Bars
Fixed, rear-connection ComPact NS630b to 1600 devices equipped with horizontal or vertical connectors may be directly connected to flat or edgewise bars, depending on the position of the connectors.
Spreaders are available to increase the pole pitch to 95 mm .

Cables with Iugs
Cable lug adapters enable connection of one to four cables with crimped lugs ($\leqslant 300 \mathrm{~mm}^{2}$).
To ensure stability, spacers must be positioned between the terminal extensions.

Electrical and mechanical accessories
 ComPact NS630b to 1600

A

Front connection of withdrawable devices
Bars
Withdrawable, front-connection ComPact NS630b to 1600 devices are suitable for direct connection of bars. Other connection possibilities for bars include vertical-connection adapters for edgewise bars and spreaders to increase the pole pitch to 95 mm .

Cable lug adapters enable connection of one to four cables with crimped lugs ($\leqslant 300 \mathrm{~mm}^{2}$).
To ensure stability, spacers must be positioned between the terminal extensions.

Cable lug adapters.

Electrical and mechanical accessories ComPact NS630b to 1600

Rear connection of withdrawable devices
 Bars

Withdrawable, rear-connection ComPact NS630b to 1600 devices equipped with horizontal or vertical connectors may be directly connected to flat or edge-wise bars, depending on the position of the connectors.
Spreaders are available to increase the pole pitch to 95 mm .

Spreaders.

Cables with lugs
Cable lug adapters enable connection of one to four cables with crimped lugs ($\leqslant 300 \mathrm{~mm}^{2}$).
To ensure stability, spacers must be positioned between the terminal extensions.

Electrical and mechanical accessories ComPact NS630b to 1600

A

ComPact NS equipped with connection shield.

Insulation of live parts

Connection shield
Mounted on fixed, front-connection devices, this shield insulates power-connection points, particularly when cables with lugs are used

Connection shield.
Interphase barriers
These barriers are flexible insulated partitions used to reinforce isolation of connection points in installations with busbars, whether insulated or not. Barriers are installed vertically between front or rear connection terminals. They are mandatory for voltages $\geqslant 500 \mathrm{~V}$ for both fixed and withdrawable products and for L and LB types, whatever the voltage.

Interphase barriers for fixed device, front connection.

Interphase barriers for fixed device, rear connection.

Safety shutters (standard)
Mounted on the chassis, the safety shutters automatically block access to the disconnecting contact cluster when the device is in the disconnected or test positions (degree of protection IP20). When the device is removed from its chassis, no live parts are accessible.
The shutters can be padlocked (padlock not supplied) to:

- prevent connection of the device
\square lock the shutters in the closed position.

Electrical and mechanical accessories ComPact NS630b to 1600

Connection of electrical auxiliaries

Fixed devices
Connections are made directly to the auxiliaries once the front has been removed. Wires exit the circuit breaker through a knock-out in the top.

Withdrawable devices
Auxiliary circuits are connected to terminal blocks located in the top part of the chassis.
The auxiliary terminal block is made up of a fixed and moving part. The two parts are in contact when the device is in the test and connected positions.

Electrical and mechanical accessories
 ComPact NS630b to 1600

All the auxiliary contacts opposite are also available in "low-level" versions capable of switching very low loads (e.g. for the control of PLCs or electronic circuits).

OF, SD and SDE changeover contacts.

Carriage switches for connected (CE), disconnected (CD) and test (CT) positions.

Indication contacts

Contacts installed in the device
Changeover contacts are used to remote circuit breaker status information and can thus be used for indications, electrical locking, relaying, etc.
They comply with the IEC 60947-5 international recommendation.

Functions

■ OF (ON/OFF) - indicates the position of the main circuit breaker contacts
$■$ SD (trip indication) - indicates that the circuit breaker has tripped due to:
\square an overload
\square a short-circuit
\square an earth-leakage fault.
\square operation of a voltage release
\square operation of the "push to trip" button
\square disconnection when the device is ON.
Returns to de-energised state when the circuit breaker is reset.
$■$ SDE (fault indication) - indicates that the circuit breaker has tripped due to:
\square an overload
\square a short-circuit
\square an earth-leakage fault.
Returns to de-energised state when the circuit breaker is reset.
■ CAF / CAO (early-make or early-break function)- indicates the position of the rotary handle. Used in particular for advanced opening of safety trip devices (early break) or to energise a control device prior to circuit breaker closing (early make).

Installation

■ OF, SD and SDE functions - a single type of contact provides all these different indication functions, depending on where it is inserted in the device. The contacts clip into slots behind the front cover of the circuit breaker

- CAF / CAO function - the contact fits into the rotary-handle unit (direct or extended).

Electrical characteristics of the OF/SD/SDE/CAF/CAO auxiliary contacts
Contacts
Rated thermal current (A)
Minimum load

Minimum load

Utilisation cat. (IEC 60947-5-1) (-5-1) AC12 AC15 DC12 DC14 AC12 AC15 | | 6 | 6 | 1 | 5 | 3 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | current (A)

Standard	Low level
6	5
100 mA at 24 V	1 mA at 4 V

24 V	6	6	6	1	5	3	5	1
48 V	6	6	2.5	0.2	5	3	2.5	0.2
110 V	6	5	0.6	0.05	5	2.5	0.6	0.05
$220 / 240 \mathrm{~V}$	6	4	-	-	5	2	-	-
250 V	-	-.3	0.03	5	-	0.3	0.03	
$380 / 440 \mathrm{~V}$	6	2	-	-	5	1.5	-	-
480 V	6	1.5	-	-	5	1	-	-
$660 / 690 \mathrm{~V}$	6	0.1	-	-	-	-	-	-

Connected, disconnected, test position carriage switches
A single type of changeover contact can be mounted optionally on the chassis to indicate, depending on the slot where it is installed:

- the connected (CE) position
\square the disconnected (CD) position. This position is indicated when the required
clearance for isolation of the power and auxiliary circuits is reached
- the test (CT) position. In this position, the power circuits are disconnected and the
auxiliary circuits are connected.

Installation

- contacts for the connected (CE), disconnected (CD) and test (CT) positions clip into the upper front section of the chassis.
Electrical characteristics of the CE/CD/CT auxiliary contacts

Contacts	Standard				Low level			
Rated thermal current (A)	8				5			
Minimum load	100 mA at 24 V				2 mA at 15 V			
Utilisation cat. (IEC 60947-5-1)	AC12	AC15	DC12	DC14	AC12	AC15	DC12	DC14
Operational 24 V	8	6	2.5	1	5	3	5	1
current (A) 48 V	8	6	2.5	0.2	5	3	2.5	0.2
(110 V	8	5	0.8	0.05	5	2.5	0.8	0.05
220/240 V	8	4	-	-	5	2	-	-
250 V	-	-	0.3	0.03	5	-	0.3	0.03
380/440 V	8	3	-	-	5	1.5	-	-
660/690 V	6	0.1	-	-	-	-	-	-

Electrical and mechanical accessories ComPact NS630b to 1600

Rotary handles

There are two types of rotary handle:

- direct rotary handle
- extended rotary handle.

There are two models:

- standard with a black handle
- VDE with a red handle and yellow front for machine-tool control.

Direct rotary handle

Degree of protection IP40, IK07.
The direct rotary handle maintains:

- visibility of and access to trip unit settings
- suitability for isolation
- indication of the three positions O (OFF), I (ON) and tripped
- access to the "push to trip" button
- circuit breaker locking capability in the OFF position by one to three padlocks, shackle diameter 5 to 8 mm (not supplied).
It replaces the circuit breaker front cover.
Accessories transform the standard direct rotary handle for the following situations:
- a higher degree of protection (IP43, IK07)
- machine-tool control, complying with CNOMO E03.81.501, IP54, IK07.

Extended rotary handle

Degree of protection IP55, IK07.

This handle makes it possible to operate circuit breakers installed at the back of switchboards, from the switchboard front.
It maintains:

- suitability for isolation
- indication of the three positions O (OFF), I (ON) and tripped
\square access to trip unit settings, when the switchboard door is open
- circuit breaker locking capability in the OFF position by one to three padlocks, shackle diameter 5 to 8 mm (not supplied).
The door cannot be opened if the circuit breaker is ON or locked.
The extended rotary handle is made up of:
- a unit that replaces the front cover of the circuit breaker (secured by screws) - an assembly (handle and front plate) on the door that is always secured in the same position, whether the circuit breaker is installed vertically or horizontally \square an extension shaft that must be adjusted to the distance. The min/max distance between the back of circuit breaker and door is $218 / 605 \mathrm{~mm}$.

ComPact NS with a direct rotary handle.

ComPact NS with an extended rotary handle.

Electrical and mechanical accessories ComPact NS630b to 1600

Manually operated circuit breakers may be equipped with an MX shunt release, an MN undervoltage release or a delayed undervoltage release ($\mathrm{MN}+$ delay unit).
Electrically operated circuit breakers are equipped as standard with a remote-operating mechanism to remotely open or close the circuit breaker. An MX shunt release or an MN undervoltage release (instantaneous or delayed) may be added.

Fixed ComPact NS800.

Fixed ComPact NS1600.

MX voltage release.

Remote tripping

This function opens the circuit breaker via an electrical order. It is made up of: - a shunt release ($2^{\text {nd }} M X$)

- or an undervoltage release MN
- or a delayed undervoltage release MN + delay unit.

These releases (2nd MX or MN) cannot be operated by the communication bus.
The delay unit, installed outside the circuit breaker, may be disabled by an emergency OFF button to obtain instantaneous opening of the circuit breaker.
Wiring diagram for the remote-tripping function

Voltage releases $2^{\text {nd }} M X$
When energised, the $2^{\text {nd }} \mathrm{MX}$ voltage release instantaneously opens the circuit breaker. A continuous supply of power to the $2^{\text {nd }} M X$ locks the circuit breaker in the OFF position. The MX release instantaneously opens the circuit breaker when energised, the minimum duration of the pulse operating order must be 200 ms .
The MX release locks the circuit breaker in OFF position if the order is maintained (except for MX "communicating" releases).

Characteristics

Power supply VAC 50/60 Hz $24-48-100 / 130-200 / 250-277-380 / 480$ V DC

12-24/30-48/60-100/130-200/250
0.7 to 1.1 Un

Operating threshold
Permanent locking function
Consumption (VA or W)
0.85 to 1.1 Un

Circuit breaker response time at Un
pick-up: 200 (200 ms) hold: 4.5
$50 \mathrm{~ms} \pm 10$
Instantaneous voltage releases MN
The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35% and 70% of its rated voltage. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuit breaker closing is enabled again when the supply voltage of the release returns to 85% of its rated value.

Characteristics

Power supply V AC 50/60 Hz	$24-48-100 / 130-200 / 250-380 / 480$
	V DC
Operating	opening
threshold	$24 / 30-48 / 60-100 / 130-200 / 250$
Consumption (VA or W)	$0.35 \mathrm{to} \mathrm{0.7} \mathrm{Un}$
MN consumption with delay unit (VA or W)	pick-up: $200(200 \mathrm{~ms})$ hold: 4.5
pick-up: $400(200 \mathrm{~ms})$ hold: 4.5	

MN delay units
To eliminate circuit breaker nuisance tripping during short voltage dips, operation of the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

Characteristics

Power supply
V AC $50-60 \mathrm{~Hz} / D C$
Operating threshold
Consumption of delay unit alone (VA or W) Circuit breaker response time at Un

non-adjustable	$100 / 130-200 / 250$
adjustable	$48 / 60-100 / 130-200 / 250-380 / 480$
opening	0.35 to 0.7 Un
closing	0.85 Un
pick-up: $200(200 \mathrm{~ms})$	hold: 4.5
non-adjustable	0.25 s
adjustable	$0.5 \mathrm{~s}-1 \mathrm{~s}-15 \mathrm{~s}-3 \mathrm{~s}$

Electrical and mechanical accessories ComPact NS630b to 1600

Electrically operated circuit breakers are equipped as standard with a motor mechanism module. Two solutions are available for electrical operation:
■ a point-to-point solution

- a bus solution with the COM communication option.

Electrically operated circuit breaker

The motor mechanism module is used to remotely open and close the circuit breaker. It is made up of a spring-charging motor equipped with an opening release and a closing release.
An electrical operation function is generally combined with:
device ON/OFF indication OF

- "fault-trip" indication SDE.

Motor mechanism module

Power supply	VAC 50/60 Hz	$48 / 60-100 / 130-200 / 240-277-380 / 415$
	VDC	$24 / 30-48 / 60-100 / 125-200 / 250$
Operating threshold		0.85 to 1.1 Un
Consumption (VA or W)	180	
Motor overcurrent		2 to 3 In for 0.1 second
Charging time	maximum 4 seconds	
Operating frequency	maximum 3 cycles per minute	

Electrical closing order

The release remotely closes the circuit breaker if the spring mechanism is charged. Release electrical characteristics are identical to those of an MX release (see above), the operating threshold is from 0.85 to 1.1 Un and the circuit breaker response time at Un is $60 \mathrm{~ms} \pm 10$.
The ComPact NS electrical operation function can be used to implement a synchrocoupling system.

Electrical opening order

The release instantaneously opens the circuit breaker when energised. The supply can be impulse-type or maintained.
Release electrical characteristics are identical to those of an MX release (see above).
Note: whether the operating order is maintened or automatically disconnected (pulse-type), "communicating" releases ("bus" solution with "COM" communication option) always have an impulse-type action (see diagram).

Electrically operated ComPact NS circuit breaker.

Wiring diagram of a bus-type electrical operation solution

In the event of simultaneous opening and closing orders, the mechanism discharges without any movement of the main contacts.
In the event of maintained opening and closing orders, the standard electrical operation solution provides an anti-pumping function by blocking the main contacts in open position.

Electrical and mechanical accessories ComPact NS630b to 1600

Toggle locked by removable padlocking device.

Rotary handle locked by a keylock.

Access to pushbuttons protected by transparent cover.

OFF position locking using padlocks.

Pushbutton locking using a padlock.

OFF position locking using a keylock and padlocks.

Locking on manually operated devices

Locking in the OFF position guarantees isolation as per IEC 60947-2.
Padlocking systems can receive up to three padlocks with shackle diameters ranging from 5 to 8 mm (padlocks not supplied).

Control device	Function	Means	Required accessories
Toggle	lock in		
	- OFF position	padlock	removable device
	- OFF or ON position	padlock	fixed device
Direct rotary handle	lock in		
	- OFF position	padlock	
	- OFF or ON position	keylock	locking device + keylock
CNOMO direct rotary lock in handle OFF position padlock			
Extended rotary handle	lock in OFF position,	padlock	
	door opening prevented	keylock	keylock

Locking in ON position does not prevent the device from tripping in the event of a fault or remote tripping order.

Locking on electrically operated devices

A reset of mechanical trip indicator
B OFF pushbutton
C OFF position locking
D ON pushbutton
E springs charged indication
F pushbutton locking
G contact position indication
(H) operation counter

Pushbutton locking VBP

The transparent cover blocks access to the pushbuttons used to open and close the device.
It is possible to independently lock the opening OFF button and the closing ON button.
The pushbuttons may be locked using either:

- padlocks (not supplied), 5 to 8 mm
- lead seal
- two screws.

Device locking in the OFF position
VCPO by padlocks, VSPO by keylocks
The circuit breaker is locked in the OFF position by physically maintaining the opening pushbutton pressed down:

- using padlocks in standard (one to three padlocks, not supplied)
- using a keylock (supplied).

Keys may be removed only when locking is effective (Profalux or Ronis type locks).
The keylocks are available in any of the following configurations:

- one keylock

■ one keylock mounted on the device + one identical keylock supplied separately for interlocking with another device.
A locking kit (without lock) is available for installation of a keylock (Ronis, Profalux, Kirk or Castell).

Electrical and mechanical accessories ComPact NS630b to 1600

Chassis locking

A mismatch protection
B door interlock
C racking interlock
D keylock locking
E padlock locking
F position indicator
G chassis front plate (accessible with cubicle door closed)
H crank entry
I reset button
J crank storage

"Disconnected" position locking by padlocks (standard) or keylocks (VSPD option)

Mounted on the chassis and accessible with the door closed, these devices lock the circuit breaker in the disconnected position in two manners:
■ using padlocks (standard), up to three padlocks (not supplied)

- using keylocks (optional), one or two different keylocks are available.

Profalux and Ronis keylocks are available in different options:

- one keylock

■ one keylock mounted on the device + one identical keylock supplied separately, using the same key, for interlocking with another device

- one (or two) keylocks mounted on the device + one (or two) identical keylocks supplied separately, for interlocking with another device.
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).
"Connected", "disconnected" and "test" position locking
The connected, disconnected and test positions are shown by an indicator and are mechanically indexed.
The racking crank blocks when the exact position is obtained.
A release button is used to free it.
As standard, the circuit breaker can be locked only in "disconnected position". On request, the locking system may be modified to lock the circuit breaker in any of the three positions: "connected", "disconnected" or "test".

Door interlock catch VPEC

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in connected or test position. It the breaker is put in the connected position with the door open, the door may be closed without having to disconnect the circuit breaker.

Racking interlock VPOC

This device prevents insertion of the crank when the cubicle door is open (device cannot be connected).

Mismatch protection VDC

Mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics. It is made up of two parts (one on the chassis and one on the circuit breaker) offering twenty different combinations that the user may select.

"Disconnected" position locking by padlocks.

"Disconnected" position locking by keylocks.

Door interlock.

Racking interlock.

Mismatch protection.

Electrical and mechanical accessories ComPact NS630b to 1600

Auxiliary terminal shield.

Operation counter

Escutcheon.

Transparent cover.

Blanking plate.

Other accessories

Auxiliary terminal shield (CB)
Optional equipment mounted on the chassis, the shield prevents access to the terminal block of the electrical auxiliaries
Operation counter (CDM)
The operation counter sums the number of operating cycles and is visible on the front panel. This option is mandatory for Source-changeover systems and only compatible with electrically operated devices.
Escutcheon (CDP)
Optional equipment mounted on the door of the cubicle, the escutcheon increases the degree of protection to IP40. It is available in fixed and withdrawable versions.
Transparent cover (CCP) for escutcheon
Optional equipment mounted on the escutcheon, the cover is hinged and secured by a screw. It increases the degree of protection to IP54 and the degree of protection against mechanical imPacts to IK10. It may be used for withdrawable devices only Blanking plate (OP) for escutcheon
Used with the escutcheon, this option closes off the door cutout of a cubicle not yet equipped with a device. It may be used with the escutcheon for both fixed and withdrawable devices.

Electrical and mechanical accessories
ComPact NS1600b to 3200 (fixed version)

(A) Vertical-connection adapters
(B) Interphase barriers

C1 Auxiliary contact
C2 Voltage release
C3 Communications module
(D) Escutcheon

Electrical and mechanical accessories ComPact NS1600b to 3200

Fixed ComPact NS.

Electrical and mechanical accessories ComPact NS1600b to 3200

All the auxiliary contacts opposite are also available in "low-level" versions capable of switching very low loads (e.g. for the control of PLCs or electronic circuits).

Indication contacts

Contacts installed in the device

Changeover contacts are used to remote circuit breaker status information and can thus be used for indications, electrical locking, relaying, etc.
They comply with the IEC 60947-5 international recommendation.

Functions

- OF (ON/OFF) - indicates the position of the main circuit breaker contacts
- SD (trip indication) - indicates that the circuit breaker has tripped due to:
\square an overload
\square a short-circuit
\square an earth-leakage fault
\square operation of a voltage release
\square operation of the "push to trip" button
- Returns to de-energised state when the circuit breaker is reset.

SDE (fault indication) - indicates that the circuit breaker has tripped due to:
\square an overload
\square a short-circuit
\square an earth-leakage fault.
Returns to de-energised state when the circuit breaker is reset.

Installation

- OF, SD and SDE functions - a single type of contact provides all these different indication functions, depending on the position where it is inserted in the device. The contacts clip into slots behind the front cover of the circuit breaker.

Electrical characteristics of the OF/SD/SDE auxiliary contacts

Electrical and mechanical accessories
 ComPact NS1600b to 3200

ComPact NS1600b to 3200 circuit breakers may be equipped with an MX shunt release, an MN undervoltage release or a delayed undervoltage release (MNR = MN + delay unit).

$M X$ voltage release

Remote tripping

This function opens the circuit breaker via an electrical order. It is made up of:
a shunt release $2^{\text {nd }} \mathrm{MX}$

- or an undervoltage release MN
- or a delayed undervoltage release MNR = MN + delay unit.

These releases ($2^{\text {nd }} M X$ or $M N$) cannot be operated by the communication bus.
The delay unit, installed outside the circuit breaker, may be disabled by an emergency OFF button to obtain instantaneous opening of the circuit breaker.

Wiring diagram for the remote-tripping function

Voltage releases $2^{\text {nd }} M X$
When energised, the $2^{\text {nd }} \mathrm{MX}$ voltage release instantaneously opens the circuit breaker. A continuous supply of power to the $2^{\text {nd }} \mathrm{MX}$ locks the circuit breaker in the OFF position.

Characteristics

Power supply V AC 50/60 Hz	$24-48-100 / 130-200 / 250-277-380 / 480$
V DC	$12-24 / 30-48 / 60-100 / 130-200 / 250$
Operating threshold	0.7 to 1.1 Un
Permanent locking function	0.85 to 1.1 Un
Consumption (VA or W)	pick-up: $200(80 \mathrm{~ms}) \quad$ hold: 4.5
Circuit breaker response time at Un	$50 \mathrm{~ms} \pm 10$

Consumption (VA or W)
Circuit breaker response time at Un pick

Instantaneous voltage releases MN
The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35 \% and 70% of its rated voltage. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuit breaker closing is enabled again when the supply voltage of the release returns
to 85% of its rated value.

ComPact NS with toggle locked using a fixed device and padlocks.

ComPact NS with toggle locked using a removable device and padlocks.

Escutcheon.

Installation recommendations

Operating conditions B-2
Installation in switchboards
Power supply and weights B-3
Safety clearances and minimum distances B-4
Installation example B-5
Door interlock for ComPact NS630b to 1600 B-6
Control wiring B-7
Temperature derating
ComPact NS devices equipped with electronic trip units. B-8
Power dissipation / Resistance
ComPact NS devices equipped with electronic trip units. B-9

Operating conditions

ComPact circuit breakers have been tested for operation in industrial atmospheres.
It is recommended that the equipment be cooled or heated to the proper operating temperature and kept free of excessive vibration and dust.

Altitude derating

: Altitude does not significantly affect circuit-breaker characteristics up to 2000 m .
잏 Above this altitude, it is necessary to take into account the decrease in the dielectric strength and cooling capacity of air.
The following table gives the corrections to be applied for altitudes above 2000 metres. The breaking capacities remain unchanged.

ComPact NS630b to 3200				
Altitude (m)	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$
Impulse withstand voltage Uimp (kV)	8	7.1	6.4	5.6
Rated insulation voltage (Ui)	800	710	635	560
Maximum rated operationnal voltage $50 / 60$ $\mathrm{~Hz} \mathrm{Ue} \mathrm{(V)}$	690	690	635	560
Rated current $40^{\circ} \mathrm{C}$	1 x In	0.99 x In	0.96 x In	0.94 x In

Intermediate values may be obtained by interpolation.

Vibrations

$\stackrel{\circ}{\circ}$ O ComPact NS devices resist electromagnetic or mechanical vibrations.
$\frac{\stackrel{\circ}{\square}}{\frac{\circ}{\square}}$ Tests are carried out in compliance with standard IEC 60068-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd's, etc.):

- $2 \Rightarrow 13.2 \mathrm{~Hz}$: amplitude $\pm 1 \mathrm{~mm}$
- $13.2 \Rightarrow 100 \mathrm{~Hz}$: constant acceleration 0.7 g .

Excessive vibration may cause tripping, breaks in connections or damage to mechanical parts.

Electromagnetic disturbances

ComPact NS devices are protected against:
$\stackrel{\text { Nin }}{\frac{1}{5}}$ overvoltages caused by an atmospheric disturbances or by a distribution-system
outage (e.g. failure of a lighting system)

- devices emitting radio waves (radios, walkie-talkies, radar, etc.)
- electrostatic discharges produced by users.

ComPact NS devices have successfully passed the electromagnetic-compatibility tests (EMC) defined by the following international standards:

- IEC 60947-2, appendix F
- IEC 60947-2, appendix B (trip units with Vigi earth-leakage function).

The above tests guarantee that:

- no nuisance tripping occurs
- tripping times are respected.

Installation in switchboards
 Power supply and weights

Power supply
ComPact NS circuit breakers can be supplied from either the top or the bottom without any reduction in performance. This capability facilitates connection when installed in a switchboard.
Weights

		Circuit breaker	Chassis
NS630b to 1600 manual operation	3P	14	14
NS630b to 1600 electrical operation	4P	18	18
NS1600b to 3200	4 P	14	16
	3P	24	21

The table above presents the weights (in kg) of the circuit breakers and the main accesories, which must be summed to obtain the total weight of complete configurations.

Installation in switchboards
 Safety clearances and minimum distances

General rules

When installing a circuit breaker, minimum distances (safety clearances) must be maintained between the device and panels, bars and other protection devices installed nearby. These distances, which depend on the ultimate breaking capacity, are defined by tests carried out in accordance with standard IEC 60947-2.
If installation conformity is not checked by type tests, it is also necessary to:

- use insulated bars for circuit-breaker connections
- block off the busbars using insulating screens.

ComPact NS630b to 3200 (fixed devices)

[1] An overhead clearance of 50 mm is required to remove the arc chutes.

Insulated parts		Metal parts
NS630b to 1600		Live parts
A 0	120	180
B 0	10	60
NS1600b to 3200		230
A 50	170	60
B 0	10	
ComPact NS630b to 1600 (withdrawable devices)		

Insulated parts	Metal parts	Live parts
A 0	0	30
B 10	10	60
C 0	0	30

F Datum

Door interlock for ComPact NS630b to 1600

Mounted on the left or right-hand side of the chassis, this locking device prevents opening of the door if the circuit breaker is in the connected or test positions. If the circuit breaker was connected with the door open, the door may be closed without having to disconnect the circuit breaker.

Dimensions (mm)

Type	(1)	(2)
NS630b to $1600(3 P)$	135	168
NS630b to $1600(4 \mathrm{P})$	205	168

Device in the connected or test positions
Door locked

Device in the disconnected position
Door not locked

Note: The door interlock may be mounted on either the left or right-hand side of the chassis. F Datum

Wiring of voltage releases

During pick-up, the power consumed is approximately 150 to 200 VA . For low control voltages ($12,24,48 \mathrm{~V}$), maximum cable lengths are imposed by the voltage and the cross-sectional area of cables.

Recommended maximum cable lengths (meter)							
		12 V		24 V		48 V	
		$\begin{aligned} & 2.5 \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1.5 \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1.5 \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mathrm{~mm}^{2} \end{aligned}$	1.5 mm ${ }^{2}$
MN	U source 100%	-	-	58	35	280	165
	U source 85 \%	-	-	16	10	75	45
MX-XF	U source 100 \%	21	12	115	70	550	330
	U source 85%	10	6	75	44	350	210

24 V DC power-supply module

External 24 V DC power-supply module for Micrologic (F1-, F2+)

- It is recommended to use the AD power supply due to its low stray primary-secondary capacitance. Good operation of the Micrologic Trip Unit in noisy environment is not guaranteed with other power supplies.
\square The dedicated AD power supplies shall be used only for the Micrologic trip units. If the COM option is used, a second dedicated power supply shall be used.
- The consumption of a Micrologic Trip Unit is approximately 100mA.
- For Micrologics control units alone, a number of 10 devices can be connected to the same AD power supply. Add other AD power supply for more than 10 Micrologics.
- If the installation is shared between several panels, one AD power supply shall be added for each panel.
- AD power supply dedicated to Micrologics trip units shall not be connected to earth. (F1-, F2+).

External 24 V DC power supply for Communication bus

- A dedicated 24 V DC power supply shall be used for the communication devices.
- Do not connect the positive terminal (E1) to earth.
- The negative terminal (E2) can be connected to earth.
- A number of communication modules (BCM, IFE, IFM, I/O, FDM...) can be connected to the same 24 V DC power supply. Refer bellow the devices consumption table to avoid exceeding the maximum current delivered by the
24 V DC power supply.
ULP module consumption
The table below lists the ULP module consumption.

Module	Typical Consumption (24 V DC at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$)	Maximum Consumption (19.2 V DC at $60^{\circ} \mathrm{C} / 140^{\circ} \mathrm{F}$)
BCM ULP for MasterPact and ComPact NS	40 mA	65 mA
Micrologic 5 or 6 trip unit for ComPact NSX circuit breakers	30 mA	55 mA
BSCM for ComPact NSX circuit breakers	9 mA	15 mA
2-wire RS 485 isolated repeater	15 mA	19 mA
FDM121 display for LV circuit breaker	21 mA	30 mA
IFM Modbus-SL interface for LV circuit breaker	21 mA	30 mA
IFE Ethernet interface for LV circuit breaker	120 mA	3 A (with gateway)
I/O input/output interface module for LV circuit breaker	165 mA	420 mA
Maintenance module	0 mA (the maintenance module has its own power supply)	0 mA (the maintenance module has its own power supply)

Installation recommendation

■ The 24 V DC wires (output of the 24 V DC power supply) shall be twist together.

- The 24 V DC wires (output of the 24 V DC power supply) must cross all power cables perpendicularly. - The technical characteristics of the external 24 V DC power-supply module for Micrologic control units are indicated on page A-28.

Temperature derating
 ComPact NS devices equipped with electronic trip units

ComPact circuit breakers have been tested for operation in industrial atmospheres.
It is recommended that the equipment be cooled or heated to the proper operating temperature and kept free of excessive vibration and dust.

ComPact NS630b to NS1600 [1]

The table below indicates the maximum rated-current value for each type of connection, depending on the ambient temperature.
For mixed connections, use the same derating values as for horizontal connections.

Version	Fixed device													
Connection	Fron or horizontal rear													
temp. Ti ${ }^{[2]}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$	$\mathbf{6 5}$	$\mathbf{7 0}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$	$\mathbf{6 5}$	$\mathbf{7 0}$
NS630b N/L	630	630	630	630	630	630	630	630	630	630	630	630	630	630
NS800 N/L	800	800	800	800	800	800	800	800	800	800	800	800	800	800
NS1000 N/L	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
NS1250 N	1250	1250	1250	1250	1250	1240	1090	1250	1250	1250	1250	1250	1250	1180
NS1600 N	1600	1600	1560	1510	1470	1420	1360	1600	1600	1600	1600	1600	1510	1460

Version	With	wab	devic											
Connection	Fron	or hor	ontal r					Vertic	rear					
temp. $\mathrm{Ti}{ }^{[2]}$	40	45	50	55	60	65	70	40	45	50	55	60	65	70
NS630b N/L	630	630	630	630	630	630	630	630	630	630	630	630	630	630
NS800 N/L	800	800	800	800	800	800	800	800	800	800	800	800	800	800
NS1000 N/L	1000	1000	1000	1000	1000	1000	920	1000	1000	1000	1000	1000	1000	990
NS1250 N	1250	1250	1250	1250	1250	1170	1000	1250	1250	1250	1250	1250	1250	1090
NS1600 N	1600	1600	1520	1480	1430	1330	1160	1600	1600	1600	1560	1510	1420	1250

ComPact NS1600b to 3200

Version	Fixed	device												
Connection	Fron	or hor	ontal r					Vertic	I rear					
temp. Ti ${ }^{[2]}$	40	45	50	55	60	65	70	40	45	50	55	60	65	70
NS1600b N	1600	1600	1600	1600	1500	1450	1400	1600	1600	1600	1600	1600	1550	1500
NS2000 N	2000	2000	2000	2000	1900	1800	1700	2000	2000	2000	2000	2000	1900	1800
NS2500 N	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500
NS3200 N	-	-	-	-	-	-	-	3200	3200	3200	3180	3080	2970	2860

[^5][2] Ti: temperature around the circuit breaker and its connections.

B-8 Life Is Onn $|$| Schneider |
| :---: |
| SElectric |

The values indicated in the tables opposite are typical values.

Power dissipated per pole (P/pole) in Watts (W)

The value indicated in the table is the power dissipated at $I_{N}, 50 / 60 \mathrm{~Hz}$, for a three-pole or four-pole circuit breaker (these values can be higher than the power calculated on the basis of the pole resistance). Measurement and calculation of the dissipated power are carried out in compliance with the recommendations of Annex G of standard IEC 60947-2.
Resistance per pole (R/pole) in milliohms ($\mathrm{m} \Omega$)
The value of the resistance per pole is provided as a general indication for a new device.
The value of the contact resistance must be determined on the basis of the measured voltage drop, in accordance with the manufacturer's test procedure (expert card ABT no. FE 05e).
Note: this measurement is not sufficient to determine the quality of the contacts, i.e. the capacity of the circuit breaker to carry its rated current.

ComPact NS630b to 1600

Version	Fixed device					
	N		L		LB	
	R/pole	P/pole	R/pole	P/pole	R/pole	P/pole
	0.026	10	0.039	15	0.056	15
NS630b	0.026	15	0.039	20	0.056	20
NS800	0.026	22	0.039	34		
NS1000	0.026	44				
NS1250	0.026	74				
NS1600						
	Withdrawable					
Version	device					
	N		L		LB	
	R/pole	P/pole	R/pole	P/pole	R/pole	P/pole
	0.038	19	0.072	34	0.086	34
NS630b	0.038	30	0.072	40	0.086	40
NS800	0.038	50	0.072	77		
NS1000	0.036	84				
NS1250	0.036	154				
NS1600						

ComPact NS1600b to 3200

Version	Fixed device \mathbf{N}	
	R/pole	P/pole
NS1600b	0.019	84
NS2000	0.013	84
NS2500	0.008	100
NS3200	0.008	227

Dimensions and connection

ComPact NS630b to 1600 (fixed version)
Dimensions C-2
Mounting C-3
Front-panel cutouts C-4
Rotary handle C-5
ComPact NS630b to 1600 (withdrawable version)
Dimensions, mounting and cutouts C-6
Rotary handle C-7
ComPact NS1600b to 3200 (fixed version) Dimensions C-8
ComPact NS630b to 3200
External modules C-9
FDM121 switchboard display C-13
FDM128 switchboard display C-14
Accessories NS630b to 3200 C-15
ComPact NS630b to 1600 (fixed version)
Bars. C-16
Cables with lugs and bare cables C-19
ComPact NS630b to 1600 (withdrawable versions)
Bars. C-20
Cables with lugs. C-22
ComPact NS1600b to 3200 (fixed version) C-23
Power connections for ComPact NS630b to 1600 Recommended drilling dimensions. C-24
Power connections for ComPact NS1600b to 3200
Recommended drilling dimensions. C-25
Power connections for ComPact NS630b to 3200 C-26
Sizing of bars C-28

Dimensions and connection

ComPact NS630b to 1600 (fixed version)

Dimensions

Manual control

Front connection (N, L)

[1] Terminal shields are optional

Rear connection (N, L, LB)

Electrical control

Front and rear connection (N, L, LB)

: Datum.
Note: Dimensions for front and rear connection on electrically operated devices are identical to those for manually operated devices.

ComPact NS630b to 1600 (fixed version)
 Mounting

Front connection

Rear connection

On backplate

On rails

ComPact NS630b to 1600 (fixed version)

Front-panel cutouts

Toggle control

F: Datum.
[1] Without escutcheon.
[2] With escutcheon.

Electrical control

Door cutout A

ComPact NS630b to 1600 (fixed version)

Rotary handle

Direct rotary handle

Door cutout

[1] Without escutcheon.
[2] With escutcheon.
Extended rotary handle
Dimensions

Dimensions and connection

ComPact NS630b to 1600 (withdrawable version)

Dimensions, mounting and cutouts

Dimensions

Manual control

Electrical control

${ }^{[1]}$ Withdrawable position
Mounting

Bottom mounting on base plate or rails

Cutouts
Door cutout
Vertical on uprights or backplate

Rear panel cutout

[1] Without escutcheon.
[2] With escutcheon.
F: Datum.
Note: \mathbf{X} and Y are the symmetry planes for a 3-pole device.

ComPact NS630b to 1600 (withdrawable version)
 Rotary handle

Direct rotary handle

Dimensions

Door cutout

[1] Without escutcheon.
[2] With escutcheon.

Extended rotary handle

Dimensions

Door cutout

Dimensions and connection

ComPact NS1600b to 3200 (fixed version)
 Dimensions

Dimensions

Door cutout (A, B, C)

C

Mounting on rails

External power-supply module (AD)

Battery module (BAT)

Chassis communication module
Modbus

Dimensions and connection

ComPact NS630b to 3200

External modules

I/O (Input/Output) application module

IFM - Modbus-SL interface

IFE - Ethernet interface

Com'X 210/510

C-10

External sensor for neutral

400/1600 A (NS630b to 1600)

1000/4000 A (NS1600b to 3200)

Installation

400/1600 (NS630b to NS1600)

1000/4000 A (NS1600b to NS3200)

Dimensions and connection

ComPact NS630b to 3200

External modules

Rectangular sensor for earth leakage protection (Vigi)

Busbars	I $\leqslant 1600$ A	I $\leqslant 3200$ A
Window (mm)	280×115	470×160
Weight (kg)	14	18

Busbars path
$280 \times 115 \mathrm{~mm}$ window
Busbars spaced 70 mm centre-to-centre
$470 \times 160 \mathrm{~mm}$ window
Busbars spaced 115 mm centre-to-centre

4 bars 100×5

4 bars 125×5

Dimensions

v

Mounting

Through panel

On panel

FDM128 switchboard display

Dimensions

Mounting
On panel

Escutcheon

NS630b to NS1600 (fixed control)
A
C

NS630b to NS1600 (withdrawable control)

NS1600b to NS3200 (fixed control)

ComPact NS630b to 1600 (fixed version)

Bars

Horizontal rear connection

Vertical rear connection

Front connection

Bottom terminal

View A detail.

ComPact NS630b to 1600 (fixed version)

Bars

Front connection with spreaders

Rear connection with spreaders

Spreader detail

Middle left or middle right spreader for 4P

View A detail.

Middle spreader for 3P

Left or right spreader for 4P

ComPact NS630b to 1600 (fixed version)

Bars

Front connection with vertical-connection adapters

View A detail.

ComPact NS630b to 1600 (fixed version)

Cables with lugs and bare cables

Front connection with vertical-connection adapters and cable-lug adapters

Lugs

Fixed circuit breaker with 4-cable bare-cable connectors ($240 \mathrm{~mm}^{2}$)

ComPact NS630b to 1600 (withdrawable versions)

Bars

Horizontal rear connection

Vertical rear connection

View A detail.
Front connection

View A detail.

ComPact NS630b to 1600 (withdrawable versions)

Bars

Front connection with spreaders

Spreader detail

Middle left or middle right spreader for 4P

View A detail.

Middle spreader for 3P

Left or right spreader for 4P
Left or right spreader for 3P

F: Datum.

ComPact NS630b to 1600 (withdrawable versions)

Cables with lugs

Front connection with vertical-connection adapters and cable-lug adapters

ComPact NS1600b to 3200 (fixed version)

Front connection (NS1600b to 2500)

Front connection with vertical-connection adapters (NS1600b to 2500)

Front connection (NS3200)

Z

View A detail.
F : Datum.
Note: Recommended connection screws: M10 class 8.8.

Power connections for ComPact NS630b to 1600
 Recommended drilling dimensions

Rear connection
Rear connection with spreaders

Middle left or middle right spreader for 4P

Middle spreader for 3P

Left or right spreader for 4P

Left or right spreader for 3P

Vertical rear connection

Front connection
Front connection with vertical-connection adapter

Top terminal

Bottom terminal

Power connections for ComPact NS1600b to 3200
 Recommended drilling dimensions

Front connection (NS1600b to 2500)

Front connection with vertical-connection adapter (NS1600b to 2500)

Front connection (NS3200)

Power connections for ComPact NS630b to 3200

Conductor materials and electrodynamic stresses

ComPact circuit breakers can be connected indifferently with bare-copper, tinned-copper and tinned-aluminium conductors (flexible or rigid bars, cables). In the event of a short-circuit, thermal and electrodynamic stresses will be exerted on the conductors. They must therefore be correctly sized and maintained in place using supports.
Electrical connection points on all types of devices (switch-disconnectors, contactors, circuit breakers, etc.) should not be used for mechanical support. Any partition between upstream and downstream connections of the device must be made of non-magnetic material.
Ties for flexible bars and cables
The table below indicates the maximum distance between ties depending on the prospective short-circuit current.
The maximum distance between ties attached to the switchboard frame is 400 mm .

Type of tie	"Panduit" ties Width: 4.5 mm Maximum load: $\mathbf{2 2} \mathbf{~ k g}$ Colour: white			"Sarel" ties Width: 9 mm Maximum load: 90 kg Colour: black				
Maximum distance between ties (mm)	200	100	50	350	200	100	70	50 (double ties)
Short-circuit current (kArms)	10	15	20		27	35	45	100

Note: For cables $\geqslant 50 \mathrm{~mm}^{2}$, use 9 mm -wide ties.

Connection of bars

Bars must be adjusted to ensure correct positioning on the terminals before bolting (B). Bars must rest on a support firmly attached to the switchboard frame, such that the circuit breaker terminals do not bear any weight (C).

Electrodynamic forces

The first spacer between bars must be positioned within a maximum distance (see table below) of the connection point to the circuit breaker. This distance is calculated to resist the electrodynamic stresses exerted between the bars of each phase during a short-circuit.

Maximum distance A between the circuit breaker connection and
the first spacer between bars, depending
on the short-circuit current

| Isc (kA) | 30 | 50 | 65 | 80 | 100 | 150 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Distance (mm) | 350 | 300 | 250 | 150 | 150 | 150 |

Power connections for ComPact NS630b to 3200

Connections

The quality of bar connections depends, among other things, on the tightening torques used for the nuts and bolts. Over-tightening may have the same consequences as under-tightening.
The correct tightening torques for the connection of bars to the circuit breaker terminals are indicated in the table below.
The values below are for copper bars (Cu ETP-NFA51-100) and steel nuts and bolts (class 8.8).
The same values apply to AGS-T52 quality aluminium bars
(French standard NFA 02-104 and American National Standard H-35-1).

Examples of bar connections

Tightening torque for bars

Rated diameter (mm)	Drilling (mm) diameter	Tightening torque (Nm) with flat or grower washers	Tightening torque (Nm) with contact or split washers
10	11	37.5	50

Bar drilling

Examples

Insulation distance

Dimensions (mm)

Utilisation voltage

$U i \leqslant 600 \mathrm{~V}$	8 mm
$U i \leqslant 1000 \mathrm{~V}$	14 mm

$U i \leqslant 1000 \mathrm{~V}$

Bar bending

Bars must be bent according to the table below. A tighter bend may cause cracks.

Dimensions (mm)

e	Radius \mathbf{r} Minimum	Recommended
5	5	7.5
10	15	18 to 20

1 terminal screws, factory tightened to 13 Nm
2 circuit breaker terminal
3 bars
4 bolt
5 washer
$6 z$ nut

Power connections for ComPact NS630b to 3200
 Sizing of bars

The following tables are based on the following assumptions:

- maximum permissible temperature of bars is $100^{\circ} \mathrm{C}$
- Ti: temperature around the circuit breaker and its connections
- busbars made of copper and not painted.

Note: The values presented in the tables are the result of trials and theoretical calculations on the basis of the assumptions mentioned above. These tables are intended as an aid in designing connections, however, the actual values must be confirmed by tests on the installation.
Front or horizontal rear connections

ComPact	Maximum service current	$\mathrm{Ti}: 40^{\circ} \mathrm{C}$ Number of bars		Ti: $50^{\circ} \mathrm{C}$ Number of bars		Ti: $60^{\circ} \mathrm{C}$ Number of bars	
		5 mm thick	10 mm thick	5 mm thick	10 mm thick	5 mm thick	10 mm thick
NS630b	400	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$
NS630b	630	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$
NS800	800	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	1b. 63×10
NS1000	1000	$3 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
NS1250	1250	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
		2b. 80×5	$2 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .80 \times 5$			
$\begin{aligned} & \text { NS1600/ } \\ & \text { 1600b } \end{aligned}$	1400	$2 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .80 \times 5$	2b. 50×10	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$
$\begin{aligned} & \text { NS1600/ } \\ & \text { 1600b } \end{aligned}$	1600	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .80 \times 5$	2b. 63×10	$3 \mathrm{~b} .80 \times 5$	$3 \mathrm{~b} .50 \times 10$
NS2000	1800	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$
NS2000	2000	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	3b. 100×5	$2 \mathrm{~b} .80 \times 10$	$3 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .63 \times 10$
NS2500	2200	3b. 100×5	$2 \mathrm{~b} .80 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	$4 \mathrm{~b} .80 \times 5$	2b. 100×10
NS2500	2500	$4 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .100 \times 10$	$4 \mathrm{~b} .100 \times 5$	2b. 100×10	$4 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$
NS3200	2800	$4 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$	$4 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$	5b. 100×5	3b. 100×10
NS3200	3000	$5 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$8 \mathrm{~b} .100 \times 5$	$4 \mathrm{~b} .80 \times 10$
NS3200	3200	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$8 \mathrm{~b} .100 \times 5$	3b. 100×10		4b. 100×10

Note: With ComPact NS630b to NS1600, it is recommended to use 50 mm wideness bars (see "Recommended busbars drilling").

Vertical rear connections

ComPact	Maximum service current	Ti: $40^{\circ} \mathrm{C}$ Number of bars		Ti: $50^{\circ} \mathrm{C}$ Number of bars		Ti: $60^{\circ} \mathrm{C}$ Number of bars	
		5 mm thick	10 mm thick	5 mm thick	10 mm thick	5 mm thick	10 mm thick
NS630b	400	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$
NS630b	630	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$
NS800	800	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$
NS1000	1000	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .63 \times 5$	$1 \mathrm{~b} .63 \times 10$
NS1250	1250	$2 \mathrm{~b} .63 \times 5$	$1 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$
NS1600	1400	$2 \mathrm{~b} .80 \times 5$	$1 \mathrm{~b} .80 \times 10$	$2 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
NS1600	1600	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$
NS2000	2000	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$
NS2500	2500	$4 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	$4 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	4b. 100×5	$3 \mathrm{~b} .80 \times 10$
NS3200	3200	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$		4b. 100×10

Electrical diagrams

ComPact NS630b to 1600
Fixed circuit breakers D-2
Withdrawable circuit breakers D-4
ComPact NS1600b to 3200
Fixed circuit breakers D-6
ComPact NS630b to 3200
Earth-fault and earth-leakage protectionNeutral protection Zone selective interlocking D-8
ComPact NS630b to 3200
Communication D-10
Fixed, electrically operated ComPact NS630b to 3200
Connection to the communication interface module D-11
Connection to the I/O application module and communication interface module. D-12
ComPact NS630b to 3200
Connection of the 24 V DC external power supply AD module D-13

ComPact NS630b to 1600

Fixed circuit breakers

The diagram is shown with circuits de-energised, all devices open, connected and charged and relays in the normal position.

ComPact NS630b to 1600

Fixed circuit breakers

Indication contacts
Terminal-block marking (electrical operation)
OF3 / OF2 / OF1: indication contacts
SDE: fault-trip indication contact (short-circuit, overload, earth fault)
SD: trip indication contact (manual operation)
CAF2/CAF1: early-make contact (rotary handle)
CAO2 / CAO1: early-break contact (rotary handle)

ComPact NS630b to 1600

Withdrawable circuit breakers

The diagram is shown with circuits de-energised, all devices open, connected and charged and relays in the normal position.

Com	UC1	UC2	UC3	CAF2
-	-	-	ठ ठ	-
E5 E6	Z5 M1	M2M3	F2+	544
- ○	- ○	\bigcirc	ठ 0	-
E3 E4	Z3 Z4	T3 T4	VN	542
- ○	- ○	- 0	ठ	\bigcirc
E1 E2	Z1 Z2	T1 T2	F1-	541

Control unit
E1-E6 communication
Z1-Z5 zone selective interlocking:
Z1 = ZSI OUT SOURCE
Z2 = ZSI OUT; Z3 ZSI IN SOURCE
Z4 = ZSI IN ST (short time)
Z5 = ZSI IN GF (earth fault)
$0 \quad 0$
-

M1 = Vigi module input (Micrologic 7)
○ ○ ○ UC2: T1, T2, T3, T4 = external neutral;
-
M2, M3 = Vigi module input (Micrologic 7)

Remote operation

Remote operation

MN / MX	MT2	MT1
ठ $/ \mathrm{\delta}$	\bigcirc	\bigcirc
D2 C2	A4	A2
		B4
бठ / ठ		$\bigcirc 0$
D1 C1		A1

Remote operation
$\overline{\mathbf{M N}}$: undervoltage release
or
MX: shunt release
Motor-mechanism module
MT2: A4 : electrical opening order
MT1: A2 : electrical closing order
B4, A1 : power supply for control devices and gear motor (MCH)

ComPact NS630b to 1600 Withdrawable circuit breakers

Indication contacts

CAF2	CAF1	SDE	SD	CAO2	CAO1	OF3	OF2	OF1
\bigcirc	$\bigcirc 0$ 534	$\begin{gathered} 80 \\ 84 \end{gathered}$	\bigcirc	\bigcirc	$\begin{gathered} \delta \quad 0 \\ 514 \end{gathered}$	$\bigcirc 0$ 34	ס	\bigcirc
$\bigcirc 0$ 542	$\begin{aligned} & \circ \quad \circ \\ & 532 \end{aligned}$	80	${ }_{92}$	$\begin{gathered} \text { ऽ } \\ 522 \end{gathered}$	\bigcirc 512	$\bigcirc 0$ 32		\bigcirc
\bigcirc	$\begin{array}{r} \circ \\ 531 \end{array}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	\bigcirc	\circ	5	ס	ס	\bigcirc

Indication contacts
OF3 / OF2 / OF1: indication contacts
SDE: fault-trip indication contact (short-circuit, overload, earth fault)
SD: trip indication contact (manual operation)
CAF2/CAF1: early-make contact (rotary handle)
CAO2 / CAO1: early-break contact (rotary handle)

CD2	CD1	CE3	CE2	CE1	CT1
$\begin{aligned} & \circ \\ & 824 \end{aligned}$	$\begin{aligned} & \circ \text { ס } \\ & 814 \end{aligned}$	\bigcirc	$\begin{aligned} & \circ \text { ठ } \\ & 324 \end{aligned}$	$\begin{aligned} & \circ \\ & 314 \end{aligned}$	$\begin{aligned} & \circ \quad \text { ర } \\ & 914 \end{aligned}$
$\begin{aligned} & \circ \quad 0 \\ & 822 \end{aligned}$	$\begin{aligned} & 8 \quad 0 \\ & 812 \end{aligned}$	$\begin{aligned} & \circ \text { O } \\ & 332 \end{aligned}$	$\begin{gathered} \text { ठ } \\ 322 \end{gathered}$	$\begin{gathered} \circ \\ 312 \end{gathered}$	$\begin{gathered} \text { ठ ठ } \\ 912 \end{gathered}$
$\begin{aligned} & 80 \\ & 821 \end{aligned}$	$\begin{aligned} & 80 \\ & 811 \end{aligned}$	$\begin{aligned} & \circ \\ & 331 \end{aligned}$	$\begin{aligned} & 60 \\ & 321 \end{aligned}$	$\begin{aligned} & \circ \\ & 311 \end{aligned}$	$\begin{aligned} & 60 \\ & 911 \end{aligned}$

Carriage switches
CD2: disconnected CE3: connected CT1: test position CD1: position

CE2: position
CE1

ComPact NS1600b to 3200

Fixed circuit breakers

The diagram is shown with circuits de-energised, all devices open, connected and charged and relays in the normal position.

- (basic)	A E	Control unit
\bigcirc	\bigcirc	E1-E6 communication
	\bigcirc	$\begin{aligned} & \text { Z1-Z5 zone selective interlocking: } \\ & \text { Z1 = ZSI OUT SOURCE } \\ & \text { Z2 = ZSI OUT ; Z3 = ZSI IN SOURCE } \\ & \text { Z4 = ZSI IN ST (short time) } \\ & \text { Z5 = ZSI IN GF (earth fault) } \\ & \text { M1 = Vigi module input (Micrologic 7) } \end{aligned}$
	\bigcirc	T1, T2, T3, T4 = external neutral; M2, M3 = Vigi module input (Micrologic 7)
	(\bigcirc	F2+, F1- external 24 V DC power supply

Remote operation
MN: undervoltage release
or
MX: shunt release

- : basic Micrologic control unit.

A: digital ammeter.

ComPact NS1600b to 3200

Fixed circuit breakers

Indication contacts
OF3 / OF2 / OF1: ON / OFF indication contacts
SDE: fault-trip indication contact (short-circuit, overload, earth fault)

SD: trip indication contact

ComPact NS630b to 3200
 Earth-fault and earth-leakage protection
 Neutral protection Zone selective interlocking

External sensor (CT) for residual earth-fault protection

Connection of current-transformer

 secondary circuit for external neutralComPact equipped with a Micrologic $6 \mathrm{~A} / \mathrm{E} / \mathrm{P}^{[1]}$:

- shielded cable with 2 twisted pairs
- T1 twisted with T2
- maximum length 4 meters
- cable cross-sectional area 0.4 to $1.5 \mathrm{~mm}^{2}$ - recommended cable: Belden 9552 or equivalent. For proper wiring of neutral CT, refer to instruction Bulletin 48041-082-03 shipped with it.
Do not remove Micrologic factory-installed jumper between T1 and T2 unless neutral CT is connected. If supply is via the top, follow the shematics. If supply is via the bottom, control wiring is identical; for the power wiring, H 1 is connected to the source side, H 2 to the load side.
For four-pole versions, for residual earth-fault protection, the current transformer for the external neutral is not necessary.
Connection for signal VN is required only for power measurements ($3 \varnothing, 4$ wires, 4CTs).
[1] Only for NS630b to 1600

External transformer for source ground return (SGR) earth-fault protection

Connection of the secondary circuit

ComPact equipped with a Micrologic 6 A/E/P ${ }^{[1]}$: unshielded cable with 1 twisted pair

- maximum length 150 metres
- cable cross-sectional area 0.4 to $1.5 \mathrm{~mm}^{2}$
- recommended cable: Belden 9409 or equivalent.
[1] Only for NS630b to 1600.

Earth-leakage protection

Connection of the rectangular-sensor secondary circuit

ComPact equipped with a Micrologic $7 \mathrm{~A} / \mathrm{P}$: use the cable shipped with the rectangular sensor.

Neutral protection

- three pole circuit breaker:
\square neutral protection is impossible with Micrologic A,E
\square with Micrologic P, an external neutral transformer is necessary; the connection diagram is the same as for residual earth-fault protection.
- four pole circuit breaker:
\square ComPact equipped with Micrologic A,E,P
\square the current transformer for external neutral is not necessary.

Zone selective interlocking

Zone-selective interlocking is used to reduce the electrodynamic forces exerted on the installation by shortening the time required to clear faults, while maintaining time selectivity between the various devices.
A pilot wire interconnects a number of circuit breakers equipped with Micrologic $A / E / P$ control units, as illustrated in the diagram above.
The control unit detecting a fault sends a signal upstream and checks for a signal arriving from downstream. If there is a signal from downstream, the circuit breaker remains closed for the full duration of its tripping delay. If there is no signal from downstream, the circuit breaker opens immediately, regardless of the tripping-delay setting.

Fault 1.

Only circuit breaker A detects the fault. Because it receives no signal from downstream, it immediately opens in spite of its tripping delay set to 0.3 .

Fault 2.

Circuit breakers A and B detect the fault. Circuit breaker A receives a signal from B and remains closed for the full duration of its tripping delay set to 0.3 . Circuit breaker B does not receive a signal from downstream and opens immediately, in spite of its tripping delay set to 0.2.

Wiring

- Maximum impedance: $2.7 \Omega / 300 \mathrm{~m}$.
- Capacity of connectors: 0.4 to $2.5 \mathrm{~mm}^{2}$.
\square Wires: single or multicore.
■ Maximum lenght: 3000 m .
- Limits to device interconnection:
\square the common ZSI - OUT (Z1) and the output ZSI - OUT
(Z2) can be connected to a maximum of 10 upstream device
\square a maximum of 100 downstream devices may be connected to the common ZSI - IN (Z3) and to an input ZSI - IN CR (Z4) or GF (Z5).

Electrical diagrams

ComPact NS630b to 3200

Communication

Connection of circuit breakers to the Modbus communication network

[1] Modbus termination is mandatory, see ULP system user guide TRV99101

Fixed, electrically operated ComPact NS630b to 3200 Connection to the communication interface module

Withdrawable ComPact NS630b to 3200

Connection to the I/O application module and communication interface module

- With Micrologic, it is recommended to connect 24 V DC external power supply (AD module) to the Micrologic control unit (F1-F2+) in order
\square to keep available the display and the energy metering, even if Current < $20 \% \ln$. \square to use the display even if the circuit breaker is open or not supplied (for the exact conditions of use, see the "electrical diagrams" part of this catalogue)
\square to display fault currents after tripping
\square to modify settings when the circuit breaker is open (OFF position).
- The same 24 V DC external power supply can be used for the micrologic control unit and the communication devices (IFE, IFM, I/O, FDM).
- The 24 V DC external power supply (AD module) for the Micrologic control unit (F1- F2+) is not required for basic protections LSIG.
- The 24 V DC external power supply for the BCM ULP communication module (E1-E2) is required. The same 24 V DC external power supply can be used for the communication devices (IFE, IFM, I/O, FDM).
- If the 24 V DC external power supply (AD module) is used to supply Micrologic control unit, this power supply shall be used only for supplying Micrologic control unit and M2C.
- The dedicated AD power supply shall be used only for the Micrologic trip unit. If the COM option is used, a second dedicated 24 V DC external power supply shall be used.

Note: case of using the 24 V DC external power supply (AD module), maximum cable length between $24 \vee$ DC (G1, G2) and the control unit (F1-, F2+) must not exceed 10 meters. The internal voltage taps are connected to the bottom side of the circuit breaker. An external voltage taps are possible using the PTE option:

- With this option, the internal voltage taps are disconnected and the voltage taps are connected to terminals $\mathrm{VN}, \mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3$.
- The PTE option is required for voltages less than 220 V and greater than 690 V (in which case a voltage transformer is compulsory). For three-pole devices, the system is supplied with terminal VN connected only to the control unit.
- When the PTE option is implemented, the voltage measurement input must be protected against short-circuits.
Installed as close as possible to the busbars, this protection function is ensured by a P25M circuit breaker (1 A rating) with an auxiliary contact (cat. no. 21104 and 21117).
- This voltage measurement input is reserved exclusively for the control unit and must not ever be used to supply other circuits outside the switchboard.

Connection

The maximum length for each conductor supplying power to the trip unit module is 10 m .

Do not ground F2+, F1-, or power supply output:

- the positive terminal (F2+) on the trip unit must not be connected to earth ground - the negative terminal (F1-) on the trip unit must not be connected to earth ground - the output terminals (-and +) of the 24 V DC power supply must not be grounded.

Reduce electromagnetic interference:

- the input and output wires of the 24 V DC power supply must be physically separated as much as possible
- the 24 V DC wires (output of the 24 V DC power supply) shall be twisted together - the 24 V DC wires (output of the 24 V DC power supply) must cross all power cables perpendicularly
- power supply conductors must be cut to length. Do not loop excess conductor.

Tripping curves
 ComPact NS630b to 3200

Micrologic electronic control units

Micrologic 2.0

Earth-fault protection (Micrologic 6.0)

[1]

$\lg =\ln x \ldots$	A	B	C	D	E	F	G	H	J
$\ln <400 A$	0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
$400 A \leqslant \ln \leqslant 1200$	A	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
In $>1200 A$	500	640	720	800	880	960	1040	1120	1200

E-2
Life Is しJn
Schnneider

Current-limiting curves

The limiting capacity of a circuit breaker is its aptitude to limit short-circuit currents.

Ics = 100 \% Icu

The exceptional limiting capacity of the ComPact NS range greatly reduces the forces created by fault currents in devices.
The result is a major increase in breaking performance. In particular, the service breaking capacity Ics is equal to 100% of Icu for limitor circuit breaker.
The Ics value, defined by IEC standard 60947-2, is guaranteed by tests comprising the following operations:
break three times consecutively a fault current equal to 100% of Icu

- check that the device continues to function normally:
\square it conducts the rated current without abnormal temperature rise
\square protection functions perform within the limits specified by the standard
\square suitability for isolation is not impaired.
Longer service life of electrical installations
Current-limiting circuit breakers greatly reduce the negative effects of short-circuits on installations.

Thermal effects

Less temperature rise in conductors, therefore longer service life for cables.

Mechanical effects

Reduced electrodynamic forces, therefore less risk of electrical contacts or busbars being deformed or broken.

Electromagnetic effects

Less disturbances for measuring devices located near electrical circuits.

Economy by means of cascading

Cascading is a technique directly derived from current limiting. Circuit breakers with breaking capacities less than the prospective short-circuit current may be installed downstream of a limiting circuit breaker. The breaking capacity is reinforced by the limiting capacity of the upstream device.
It follows that substantial savings can be made on downstream equipment and enclosures.

Current-limiting curves

The current-limiting capacity of a circuit breaker is expressed by two curves which are a function of the prospective short-circuit current (the current which would flow if no protection devices were installed):

- the actual peak current (limited current),
- thermal stress $\left(\mathrm{A}^{2} \mathrm{~s}\right)$, i.e. the energy dissipated by the short-circuit in a conductor with a resistance of 1Ω.

Example

What is the real value of a 200 kA rms prospective short-circuit (i.e. 440 kA peak) limited by an NS630bLB upstream ?
Answer: 70 kA peak (see next page).

The exceptional limiting capacity of the ComPact NS range is due to the rotating double-break technique (very rapid natural repulsion of contacts and the appearance of two arc voltages in-series with a very steep wave front).

Current-limiting curves

Current-limiting curves

Voltage 400/440 V AC (1)
Limited short-circuit current (kÂ peak)

Rated short-circuit current (kA rms)

Voltage 660/690 V AC
Limited short-circuit current (kÂ peak)

Rated short-circuit current (kA rms)

Thermal-stress curves

Voltage 400/440 V AC [1]

Limited energy

Rated short-circuit current (kA rms)

Voltage 660/690 V AC
Limited energy

Rated short-circuit current (kA rms)

Catalogue numbers and order forms

NS630b to NS1600 fixed manually operated
Complete device. F-2
Device based on separate components F-4
NS630b to NS1600 fixed electrically operated
Device based on separate components F-5
NS630b to NS1600 manually operated withdrawable devices Device based on separate components F-6
NS630b to NS1600 electrically operated withdrawable devices Device based on separate components F-7
Accessories for NS630b to NS1600 fixed devices F-8
Accessories for NS630b to NS1600 withdrawable devices F-9
Accessories for NS630b to NS1600 fixed and withdrawable devices F-11
Mechanical interlocking F-12
Communication option for NS630b to NS1600 fixed and withdrawable devices F-13
NS1600b to NS3200 fixed, front-connected, manually operated device F-14
Accessories for NS1600b to NS3200 F-15
Spare parts: NS630b to NS1600 fixed circuit breaker Connection F-16
Electrical auxiliaries and installation accessories. F-17
Micrologic control unit, external sensor F-18
Locking and accessories F-19
Spare parts: NS630b to NS1600 fixed and withdrawable circuit breaker
Mechanical interlocking for source changeover F-20
Spare parts: NS630b to NS1600 withdrawable circuit breaker Connection F-21
Electrical auxiliaries F-22
Installation accessories. F-23
Micrologic control unit, external sensor F-24
Locking and accessories F-25
Chassis locking and accessories Mechanical interlocking for source changeover F-26
Spare parts: NS630b to NS1600 fixed or withdrawable circuit breaker Instructions F-27
Spare parts: Communication bus accessories, monitoring and control, ethernet gateway. F-28
Spare parts: ComPact NS1600b to 3200
Connection, locking and installation accessories. F-29
Micrologic control unit, external sensor F-30
Order form: ComPact NS630b to NS3200
Circuit breakers and switch-disconnectors F-31

NS630b to NS1600 fixed manually operated
 Complete device

Front-connected circuit breaker with Micrologic 2.0 control unit

	ComPact NS type N		
	$\mathrm{Icu}=50 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
	NS630b	33460	33463
	NS800	33466	33469
	NS1000	33472	33475
	NS1250	33478	33480
	NS1600	33482	33484
	ComPact NS type H		
	$\mathrm{Icu}=70 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
	NS630b	33461	33464
	NS800	33467	33470
	NS1000	33473	33476
	NS1250	33479	33481
	NS1600	33483	33485
	ComPact NS type L		
	$\mathrm{Icu}=150 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
	NS630b	33462	33465
	NS800	33468	33471
	NS1000	33474	33477

Front-connected circuit breaker with Micrologic 5.0 control unit

	ComPact NS type N		
	Icu $=50 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
	NS630b	33546	33549
	NS800	33552	33555
	NS1000	33558	33561
	NS1250	33564	33566
	NS1600	33568	33570
	ComPact NS type H		
	Icu $=70 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
	NS630b	33547	33550
	NS800	33553	33556
	NS1000	33559	33562
	NS1250	33565	33567
	NS1600	33569	33571
	ComPact NS type L		
	Icu $=150 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
	NS630b	33548	33551
	NS800	33554	33557
	NS1000	33560	33563

Front-connected circuit breaker with Micrologic 6.0 control unit

	ComPact NS type N		
	Icu $=50 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
	NS630b	33886	33888
	NS800	33893	33896
	NS1000	33909	33917
	NS1250	33919	33923
	NS1600	33925	33927
	ComPact NS type H		
	$\mathrm{Icu}=70 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
	NS630b	33887	33889
	NS800	33894	33901
	NS1000	33916	33918
	NS1250	33922	33924
	NS1600	33926	33928

Front-connected circuit breaker with Micrologic 2.0 A control unit

	ComPact NS type N Co $=50 \mathrm{kA}$ at 2201415 V		4P
	NS630b	33223	33227
	NS800	33233	33237
	NS1000	33243	33247
	NS1250	33253	33257
	NS1600	33263	33267
	ComPact NS type H		
	$\mathrm{Icu}=70 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
	NS630b	33228	33229
	NS800	33238	33239
	NS1000	33248	33249
	NS1250	33258	33259
	NS1600	33268	33269
	ComPact NS type L		
	Icu $=150 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
	NS630b	33497	33500
	NS800	33498	33501
	NS1000	33499	33502

Front-connected circuit breaker with Micrologic 5.0 A control unit

	ComPact NS type N Icu $=50 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
	NS630b	33323	33327
	NS800	33333	33337
	NS1000	33343	33347
	NS1250	33353	33357
	NS1600	33363	33367
	ComPact NS type H		
	$\mathrm{Icu}=70 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
	NS630b	33328	33329
	NS800	33338	33339
	NS1000	33348	33349
	NS1250	33358	33359
	NS1600	33368	33369
	ComPact NS type L		
	$\mathrm{Icu}=150 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
	NS630b	33516	33519
	NS800	33517	33520
	NS1000	33518	33521

Fixed front connected Micrologic 2.0 E

| | ComPact NS type N \|3P | | | |
| :---: | :---: | :---: | :---: |
| | | | |
| | NS630b | 34400 | $\begin{aligned} & 34402 \\ & 34406 \end{aligned}$ |
| | NS1000 | 34408 | 34410 |
| | NS1250 | 34412 | 34414 |
| | NS1600 | 34416 | 34418 |
| | ComPact NS type H | | |
| | | 3P | 4P |
| | NS630b | 34401 | 34403 |
| | NS800 | 34405 | 34407 |
| | NS1000 | 34409 | 34411 |
| | NS1250 | 34413 | 34415 |
| | NS1600 | 34417 | 34419 |

Fixed front connected Micrologic 5.0 E
ComPact NS type N

3P	4P
34420	34422
34424	34426
34428	34430
34432	34434
34436	34438
3P	4P
34421	34423
34425	34427
34429	34431
34433	34435
34437	34439

Front-connected switch-disconnector

NS630b
NS800
NS1000
NS1250
NS1600

$3 P$	4 P
33486	33491
33487	33492
33488	33493
33489	33494
33490	33495

[^6]
NS630b to NS1600 fixed manually operated
 Device based on separate components

Basic circuit breaker

Basic switch-disconnector

| | ComPact NS type NA \|3P | | | |
| :---: | :---: | :---: | :---: |
| | | | |
| | NS630b | 33420 | 33421 |
| | NS800 | 33422 | 33423 |
| | NS1000 | 33424 | 33425 |
| | NS1250 | 33426 | 33427 |
| | NS1600 | 33428 | 33429 |

Connections for circuit breakers and switch-disconnectors

		Front connection ${ }^{\text {a }}$ (3P	3P	4P
	630-1000 A - NA/N/H	Top	33598	33608
		Bottom	33599	33609
	1250 A - NA/N/H	Top	33600	33610
	630-1000 A - L	Bottom	33601	33611
	1600 A - NA/N/H	Top	33602	33612
		Bottom	33603	33613
	Rear connection			
			3P	4P
	Vertical NA/N/H/L/LB	Top	33604	33614
		Bottom	33605	33615
	Horizontal	Top	33606	33616
	NA/N/H/L/LB	Bottom	33607	33617

Note: to order a complete device, order:
$■$ a basic circuit breaker and a Micrologic control unit, or a basic switch disconnector. \square connections. \square accessories (for the device, the connection, the control unit) and communication option as required.

NS630b to NS1600 fixed electrically operated Device based on separate components

Basic switch-disconnector

separately by selecting a part number from the table at the bottom of this page.

Connections for circuit breakers and switch-disconnectors

	Front connection			
			3P	4P
	630-1000 A - NA/N/H	Top	33598	33608
		Bottom	33599	33609
	1250 A - NA/N/H	Top	33600	33610
	630-1000 A - L	Bottom	33601	33611
	1600 A - NA/N/H	Top	33602	33612
		Bottom	33603	33613
	Rear connection			
	Vertical NA/N/H/L	Top	33604	33614
		Bottom	33605	33615
	Horizontal	Top	33606	33616
	NA/N/H/L	Bottom	33607	33617

Motor mechanism module

	AC 50/60 Hz					DC				
0		Standard		Communicating			Standard		Communicating	
\%	48 V	33691	${ }^{[2]}$	33698	${ }^{[2]}$	24/30 V	33690	${ }^{[2]}$	33697	${ }^{[2]}$
	100/130 V	33687	${ }^{[2]}$	33694	${ }^{[2]}$	48/60 V	33691	${ }^{[2]}$	33698	${ }^{[2]}$
\%	220/240 V	33688	${ }^{[2]}$	33695	${ }^{[2]}$	100/130 V	33692	${ }^{[2]}$	33699	${ }^{[2]}$
\%	$380 / 415 \mathrm{~V}$	33689	[2]	33696	${ }^{[2]}$	200/250 V	33693	${ }^{[2]}$	33700	${ }^{[2]}$

Note: to order a complete device, order:
\square a basic circuit breaker and a Micrologic control unit, or a basic switch disconnector. \square connections. \square accessories (for the device, the connection, the control unit) and communication option as required.
[2] Consult us.

NS630b to NS1600 manually operated withdrawable devices Device based on separate components

Basic circuit breaker

Basic switch-disconnector

ComPact NS type NA

	$3 P$	$4 P$
NS630b	33430	33431
NS800	33432	33433
NS1000	33434	33435
NS1250	33436	33437
	33438	33439

Basic chassis and connections

Note: to order a complete device, order:
\square a basic circuit breaker and a Micrologic control unit, or a basic switch disconnector. ■ chassis and connections. \square accessories (for the device, the connection, the control unit) and communication option as required.

NS630b to NS1600 electrically operated withdrawable devices Device based on separate components

Basic circuit breaker

ComPact NS type N		
$\mathrm{Icu}=50 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
NS630b	33370	33374
NS800	33380	33384
NS1000	33390	33394
NS1250	33400	33404
NS1600	33410	33414
ComPact NS type H		
Icu $=70 \mathrm{kA}$ at 220/415 V	3P	4P
NS630b	33371	33375
NS800	33381	33385
NS1000	33391	33395
NS1250	33401	33405
NS1600	33411	33415
ComPact NS type L		
$\mathrm{Icu}=150 \mathrm{kA}$ at $220 / 415 \mathrm{~V}$	3P	4P
NS630b	33372	33376
NS800	33382	33386
NS1000	33392	33396

without "measurement"
Without "measurement"

	3P/4P
Micrologic 2.0 basic protection	33504
Micrologic 5.0 selective protection	33511
Micrologic 6.0 selective + earth-fault protection	33515
"ammeter" A	
	3P/4P
Micrologic 2.0 A basic protection	33525
Micrologic 5.0 A selective protection	33532
Micrologic 6.0 A selective + earth-fault protection	33533
Micrologic 7.0 A selective + earth-leakage protection	33534
"energy" E [1]	
	3P/4P
Micrologic 2.0 E basic protection	33536
Micrologic 5.0 E selective protection	33538
Micrologic 6.0 E selective + earth-fault protection	33540
"power meter" P [1]	
	3P/4P
Micrologic 5.0 P selective protection	65293
Micrologic 6.0 P selective + earth-fault protection	65294
Micrologic 7.0 P selective + earth-leakage protection	65295

Micrologic 7.0 P selective + earth-leakage protection

ComPact NS type NA		
	3P	$\mathbf{4 P}$
NS630b	$\mathbf{3 3 4 5 0}$	$\mathbf{3 3 4 5 1}$
NS800	$\mathbf{3 3 4 5 2}$	$\mathbf{3 3 4 5 3}$
NS1000	33454	33455
NS1250	$\mathbf{3 3 4 5 6}$	$\mathbf{3 3 4 5 7}$
NS1600	$\mathbf{3 3 4 5 8}$	$\mathbf{3 3 4 5 9}$

Note: the characteristics of the motor mechanism module for electrical operation are specified separately by selecting a part number from the table at the bottom of this page.

Chassis and connections

Chassis			
		3P	4P
630-1250 A - NA/N/H		33722	33725
1600 A - NA/N/H		33723	33726
630-1000 A - L			
+ connection			
		3P	4P
Front connection			
Top NA/N/H/L		33727	33733
Bottom NA/N/H/L		33728	33734
Rear connection			
Vertical NA/N/H/L	Top	33729	33735
	Bottom	33730	33736
Horizontal	Top	33731	33737
NA/N/H/L	Bottom	33732	33738

Motor mechanism module

Note: to order a complete device, order:

- a basic circuit breaker and a Micrologic control unit, or a basic switch disconnector. ■ chassis and connections.
\square accessories (for the device, the connection, the control unit) and communication option as required.
[2] Consult us.

Accessories for NS630b to NS1600 fixed devices

Accessories for NS630b to NS1600 withdrawable devices

Accessories for NS630b to NS1600 withdrawable devices

Chassis locking

Keylocking in disconnected position			
	By Profalux keylocks		
	Profalux	1 lock with 1 key + ada	64909
		2 locks 1 key + adapta	64910
		2 locks 2 different keys	64911
	1 keylock Profalux (without adaptation kit):		
		identical key not identifit	33173
		identical key identified	33174
		identical key identified	33175
	By Ronis keylocks		
	Ronis	1 lock with 1 key + ada	64912
		2 locks 1 key + adapta	64913
		2 locks 2 different keys	64914
	1 keylock Ronis (without adaptation kit):		
		identical key not identified	33189
		identical key identified	33190
		identical key identified	33191
		identical key identified	33192
	Optional disconnected/test/connected position locking Adaptation kit (without keylock):		
		adaptation kit Profalux	33769
		adaptation kit Ronis	33770
		adaptation kit Castell	33771
		adaptation kit Kirk	33772
Door interlock			
N-	Right sid		33786
	Left side		33787

	33788
Mismatch protection (VDC)	
	33767

Transparent cover for escutcheon

Accessories for NS630b to NS1600 fixed and withdrawable devices

Locking for manually operated devices

Rotary handle for manually operated devices
Devices with direct rotary handles

Locking and accessories for electrically operated devices
Pushbutton locking

By transparent cover + padlocks
| 33897

Locking in OFF position

By padlocks + BPFE support	
VCPO	47514
By Profalux keylocks	
Profalux 1 lock with 1 key + adaptation kit	33902
2 locks 1 key + adaptation kit	33904
1 keylock Profalux (without adaptation kit):	
identical key not identified combination	33173
identical key identified 215470 combination	33174
identical key identified 215471 combination	33175

By Ronis keylocks + BPFE support

Operation counter CDM

Accessories for NS630b to 1600 fixed and withdrawable devices

Mechanical interlocking

Mechanical interlocking for source changeover
Interlocking using connecting rods for ComPact electrically operated devices

Complete assembly with 2 adaptation fixtures + rods
2 ComPact fixed devices
33910
2 ComPact withdrawable devices

Interlocking using cables for ComPact electrically operated devices

Complete assembly with 2 adaptation fixtures + cables

1 ComPact fixed + 1 ComPact withdrawable device

Communication option for NS630b to NS1600 fixed and withdrawable devices

Communication options

	IFE	Ethernet interface for LV breaker Ethernet interface for LV breakers and gateway	LV434001 LV434002
	IFM Modbus-SL interface module		LV434000
	I/O application module		LV434063
	For fixed devices COM (BCM-ULP) Eco COM module (BCM-ULP) For drawout devices Breaker + chassis	$\begin{array}{\|l\|} \text { Manually operated } \\ \hline 33702 \\ \hline 33703 \end{array}$	$\begin{aligned} & \text { Electrically operated } \\ & \hline 33708 \\ & \hline 33709 \\ & \hline \end{aligned}$
	COM (BCM-ULP) Eco COM module (BCM-ULP)	$\begin{array}{\|l\|} \hline \text { Manually operated } \\ \hline 33842 \\ \hline 33714 \\ \hline \end{array}$	$\begin{aligned} & \text { Electrically operated } \\ & \hline 33848 \\ & \hline 33713 \\ & \hline \end{aligned}$

Accessories for Micrologic control units

Source ground return (SGR) earth fault protection

	External sensor (SGR)	33579
	MDGF summing module	48891
External power supply module (AD)		
	24/30 V DC	LV454440
	48/60 V DC	LV454441
	100/125 V DC	LV454442
	110/130 V AC	LV454443
	200/240 V AC	LV454444

Test equipment
Mini test kit

> Hand held test kit (HHTK)

Portable test kit

| Full function test kit (FFTK) | 33595 |
| :--- | :--- | :--- |
| Test report edition come from FFTK | 34559 |
| FFTK test cable 2 pin for STR trip unit | 34560 |
| FFTK test cable 7 pin for Micrologic trip unit | 33590 |

NS1600b to NS3200 fixed, front-connected, manually operated device

Circuit breaker

ComPact NS type N Icu $=85 / 70$ kA to 220/415 V	4 P	
NS1600b	34000	34003
NS2000	$\mathbf{3 4 0 0 6}$	34009
NS2500	$\mathbf{3 4 0 1 2}$	$\mathbf{3 4 0 1 5}$
NS3200	$\mathbf{3 4 0 1 8}$	$\mathbf{3 4 0 2 1}$
ComPact NS type H		
Icu $=125 / 85$ kA to 220/415 V	$3 P$	4 P
NS1600b	$\mathbf{3 4 0 0 1}$	34004
NS2000	$\mathbf{3 4 0 0 7}$	$\mathbf{3 4 0 1 0}$
NS2500	$\mathbf{3 4 0 1 3}$	$\mathbf{3 4 0 1 6}$
NS3200	$\mathbf{3 4 0 1 9}$	$\mathbf{3 4 0 2 2}$

Micrologic control units
Without "measurement"

		3P/4P
Micrologic 2.0	basic protection	33504
Micrologic 5.0	selective protection	33511
Micrologic 6.0	selective + earth-fault protection	33515
"ammeter" A		
		3P/4P
Micrologic 2.0 A	basic protection	33505
Micrologic 5.0 A	selective protection	33512
Micrologic 6.0 A	selective + earth-fault protection	33513
Micrologic 7.0 A	selective + earth-leakage protection	33514
"energy" E		
		3P/4P
Micrologic 2.0 E	basic protection	33535
Micrologic 5.0 E	selective protection	33537
Micrologic 6.0 E	selective + earth-fault protection	33539

Switch-disconnector

ComPact NS type NA		
	$3 P$	$4 P$
NS1600b	$\mathbf{3 4 0 2 4}$	34025
NS2000	$\mathbf{3 4 0 2 7}$	34028
NS2500	$\mathbf{3 4 0 3 0}$	34031
NS3200	$\mathbf{3 4 0 3 3}$	$\mathbf{3 4 0 3 4}$

Optional vertical connection adaptor

| (1000\||000 | 1600/2500 A | $\begin{aligned} & \frac{3 \mathrm{P}(3 \text { parts })}{4 \mathrm{P}(4 \text { parts })} \end{aligned}$ | $\begin{aligned} & 33975 \\ & 33976 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| | Note: standard for 3200 A. | | |

Electrical auxiliaries

Indication contacts
OF, ON/OFF indication contacts
SD, trip indication contact for manually operated devices

$6 \mathrm{~A}-240 \mathrm{~V}$	Low level
33108	33109
33004	33008
$\mathbf{3 3 0 1 1}$	

33012
Up to 3 OF, 1 SD and 1 SDE can be connected
Instantaneous voltage releases

		MX	MN	Delay unit	R (non-adjustable)	Rr (adjustable)
$\stackrel{\circ}{\circ}$	12 V DC	33658				
\% \%	24/30 V DC, 24 V AC	33659	33668			
\%	48/60 V DC, 48 V AC	33660	33669	48/60 V AC/DC		33680
	100/130 V AC/DC	33661	33670	100/130 V AC/DC	33684	33681
\downarrow	200/250 V AC/DC	33662	33671	200/250 V AC/DC	33685	33682
	277 V AC	33663				
	380/480 V AC	33664	33673	380/480 V AC/DC		33683

Locking

Removable toggle locking system

Locking by 3 padlocks

Fixed toggle locking system
Locking by 3 padlocks

Accessories for NS1600b to NS3200

Communication option

IFE Ethernet interface for LV breaker	LV434001
Ethernet interface for LV breakers and gateway	LV434002
IFM Modbus-SL interface module	LV434000
I/O application module	LV434063
COM (BCM-ULP)	
	33986
Eco COM module (BCM-ULP)	
	33988

Accessories for Micrologic control units

Long-time rating plug (enhanced accuracy by limiting the setting range)			
	Standard	0.4 to 1 x lr	33542
80	Low setting	0.4 to $0.8 \times \mathrm{lr}$	33543
	High setting	0.8 to $1 \times \mathrm{lr}$	33544
	Without long	OFF	33545

External sensors
External sensor for neutral + earth-fault protection (TCE)

Spare parts：NS630b to NS1600 fixed circuit breaker Connection

Connections for circuit breakers and switch－disconnectors

	Front connection／Replacement kit（3 or 4 parts）			
			3P	
	630／1000 A－N	Top	33598	33608
		Bottom	33599	33609
	1250 A－N	Top	33600	33610
	$\begin{aligned} & \text { 630-1000 A - L } \\ & 630 / 800 \mathrm{~A}-\mathrm{LB} \end{aligned}$	Bottom	33601	33611
	1600 A－N	Top	33602	33612
		Bottom	33603	33613
	Rear connection／Replacement kit（3 or 4 parts）			
			3P	4P
	Vertical and horizontal（top or bottom）		33584	33585
	Installation manual		33148	

Connection accessories
Bare－cable connectors＋ 1 connector shield for 4 cables（ $240 \mathrm{~mm}^{2}$ ）

	0	3P	33642
	\％or	4P	33643
	6\％	Installation manual	33148
	Cable lug adapters／Replacement kit（3 or 4 parts）		
		3P	33644
	－0：	4P	33645
	\％o\％ 0°	Installation manual	33148
	Interphase barriers／Replacement kit（3 parts）		

$\stackrel{\circ}{⿳ 亠 丷 厂 犬}$	3P／4P top／bottom Installation manual

			Rear connection
		3P／4P top／bottom	33648
		Installation manual	33148
		Arc chute screen／ 1 part	
		3 P	64907
		4 P	33597
		Installation manual	33148
		Brackets for mounting on a horizontal surface（2 parts）	

Spreaders／Replacement kit（3 or 4 parts）

	3 P		33622
	4 P		33623
	Installation manual		33148
Cable lug kits／Replacement kit（6 or 8 parts）			
	$240 \mathrm{~mm}^{2}$	3 P （6 lug kit）	33013
		4 P （8 lug kit）	33014
	$300 \mathrm{~mm}^{2}$	3P（6 lug kit）	33015
		4 P （8 lug kit）	33016
	Installatio		33148

Spare parts: NS630b to NS1600 fixed circuit breaker
 Electrical auxiliaries and installation accessories

Electrical auxiliaries

Indication contact / 1 part
OF, ON/OFF indication contacts
SD trip indication contact for manually operated devices SDE fault indication contact operated devices

29450

6 A -240 V	Low level
29450	29452
29450	29452
29450	29452

Installation manual
erated devices)
| 33148

Remote tripping / 1 part

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Spare parts: NS630b to NS1600 fixed circuit breaker
 Micrologic control unit, external sensor

Replacement parts for Micrologic control units
Long-time rating plug (limits setting range for higher accuracy) / 1 part

		Standard	0.4 at $1 \times \mathrm{Ir}$	33542
		Low-setting option	0.4 at $0.8 \times \mathrm{lr}$	33543
		High-setting option	0.8 at $1 \times \mathrm{lr}$	33544
		Without long-time protection	off	33545
Battery + cover				
		Battery (1 part)		33593
		Cover (1 part)	For Micrologic A, E	33592
			For Micrologic P	47067

Communication option

	IFE	Ethernet interface for LV breaker	LV434001
		Ethernet interface for LV breakers and gateway	LV434002
	IFM Modbus-SL interface module		LV434000
	I/O application module		LV434063
	User guide IFE		DOCA0084EN-00
	User guide I/O application module		DOCA0055EN-00
External sensors			
External sensor for neutral + earth-fault protection (TCE) / 1 part			
	CT rating: 400/1600 A		33576

\cdots	Inside dimensions (mm)	le (A)	
	280×115	1600	33573

	External sensor (SGR)	33579
\cdots	MDGF summing module	48891

)
48891

External power supply module (AD) / 1 part)

	24-30 V DC	LV454440
	48-60 V DC	LV454441
	100-125 V DC	LV454442
	110-130 V AC	LV454443
	200-240 V AC	LV454444
Test equipments / 1 part		
	Hand held test kit (HHTK)	33594
	Full function test kit (FFTK)	33595
	Test report edition come from FFTK	34559
	FFTK test cable 2 pin for STR trip unit	34560
	FFTK test cable 7 pin for Micrologic trip unit	33590

Spare parts: NS630b to NS1600 fixed circuit breaker Locking and accessories

Locking for manually operated devices

Spare parts: NS630b to NS1600 fixed and withdrawable circuit breaker

Mechanical interlocking for source changeover

Mechanical interlocking for source changeover
Interlocking using connecting rods for ComPact electrically operated devices

Complete assembly with 2 adaptation fixtures + rods
2 ComPact fixed devices
33910
Note: the installation manual is enclosed.
0

Complete assembly with 2 adaptation fixtures + cables
1 ComPact fixed devices
33911
Note: the installation manual is enclosed.

Spare parts: NS630b to NS1600 withdrawable circuit breaker Connection

Spare parts: NS630b to NS1600 withdrawable circuit breaker

Electrical auxiliaries

Electrical auxiliaries
SD trip indication contact for manually operated devices / 1 part

Spare parts: NS630b to NS1600 withdrawable circuit breaker Installation accessories

| 33857

Transparent cover for escutcheon / 1 part

Blanking plate / 1 part

Spare parts: NS630b to NS1600 withdrawable circuit breaker
 Micrologic control unit, external sensor

Replacement parts for Micrologic control units
Long-time rating plug (limits setting range for higher accuracy) / 1 part

	Standard	0.4 at $1 \times \mathrm{lr}$	33542
	Low-setting option	0.4 at $0.8 \times \mathrm{lr}$	33543
	High-setting option	0.8 at $1 \times \mathrm{lr}$	33544
	Without long-time protection	off	33545
Battery + cover			
	Battery (1 part) Cover (1 part)	For Micrologic A, E For Micrologic P	$\begin{array}{\|l\|} 33593 \\ 33592 \\ 47067 \end{array}$
		For Micrologic P	

	IFE	Ethernet interface for LV breaker	LV434001
		Ethernet interface for LV breakers and gateway	LV434002
	IFM Modbus-SL interface module		LV434000
	1/O application module		LV434063
	User guide IFE		DOCA0084EN-00
	User guide I/O application module		DOCA0055EN-00
External sensors			
External sensor for neutral + earth-fault protection (TCE) / 1 part			
	CT rating: 400/1600 A		33576

	External sensor (SGR)	33579
,	MDGF summing module	48891

Spare parts: NS630b to NS1600 withdrawable circuit breaker Locking and accessories

$\underline{\text { Locking for manually operated devices }}$

Removable toggle locking system / 1 part				
	Locking by 3 padlocks			\| 44936
	Installation manual			33148
Fixed toggle locking system / 1 part				
	Locking by 3 padlocks			\| 32631
	Installation manual			33148
Rotary handle for manually operated devices				
Devices with direct rotary handles / 1 part				
	Conversion accessory	CNOMO	33866	
	Locking by keylocks		Ronis	Profalux
		OFF position	33870	33869
		OFF and ON positions	33872	33871
	Keylock kit (without key		33868	33868
	Installation manual			33150
Mechanical interlocking				
	For 2 devices with extended rotary handles			33890

Locking and accessories for electrically operated devices
Pushbutton locking / 1 part

By transparent cover + padlocks
| 33897
Installation manual
Locking in OFF position / 1 part
By padlocks + BPFE support

By Profalux keylocks

Profalux	l lock with 1 key + adaptation kit 2 locks 1 key + adaptation kit	33902
1 keylock Profalux (without adaptation kit):	33904	
identical key not identified combination	33173 identical key identified 215470 combination identical key identified 215471 combination	33317

By Ronis keylocks

Ronis	1 lock with 1 key + adaptation kit	33903
2 locks 1 key + adaptation kit	339	

1 keylock Ronis (without adaptation kit):

identical key not identified combination	33189
33190	

identical key identified EL24135 combination	33190

| identical key identified EL24153 combination | 33191 |
| :--- | :--- | :--- |

identical key identified EL24315 combination	33192

Adaptation kit (without keylock):

adaptation kit Profalux	33898

adaptation kit Ronis

adaptation kit Ronis	33899
adaptation kit Kirk	47517

Installation manual 47518
33895

Spare parts: NS630b to NS1600 withdrawable circuit breaker Chassis locking and accessories Mechanical interlocking for source changeover

Chassis locking

| |
| :--- | :--- | :--- | :--- | :--- | :--- |

Installation manual
Mismatch protection (VDC) / 1 part

Installation manual
Mechanical interlocking for source changeover

devices
Note: the installation manual is enclosed.

Spare parts: NS630b to NS1600 fixed or withdrawable circuit breaker

Instructions

Chassis accessories			47104
Circuit breaker accessories		Manual	33148
		Electrical	33149
Fixed and drawout circuit breaker		Manual	33148
		Electrical	33149
NS630b user manual	French		33159
	English		33160
Micrologic user manual	20/50 (French)		33076
	20/50 (English)		33077
	2A/7A (French)		33079
	2A/7A (English)		33080
	2E/6E (French)		33079
	2E/6E (English)		33080
	5P/7P (French)		33082
	5P/7P (English)		33083
Modbus communication notice for manual			33088

Spare parts：Communication bus accessories， monitoring and control，ethernet gateway

	IFE	Ethernet interface for LV breaker	LV434001
		Ethernet interface for LV breakers and gateway	LV434002
	IFM Modbus－SL interface module		LV434000
	I／O application module		LV434063
Monitoring and control			
ULP display module ${ }^{[1]}$			
	Switchboard front display module FDM121 FDM mounting accessory（diameter 22 mm ）		TRV00121 TRV00128
Ethernet display module			
	Switchboard front display module FDM128		LV434128
ULP wiring accessories			
	Breaker ULP cord L $=0.35 \mathrm{~m}$		LV434195
	Breaker ULP cord L $=1.3 \mathrm{~m}$		LV434196
	Breaker ULP cord L $=3 \mathrm{~m}$		LV434197
	Breaker ULP cord L $=5 \mathrm{~m}$		LV434198

Breaker ULP cord $\mathrm{L}=1.3 \mathrm{~m}$
Breaker ULP cord $\mathrm{L}=3 \mathrm{~m}$
Breaker ULP cord $\mathrm{L}=5 \mathrm{~m}$ LV434198

10 Modbus line terminators
｜VW3A8306DRC ${ }^{[2]}$

Connector Modbus adaptor	LV434211

坔華

	5 RJ45 connectors female／female	TRV00870
	10 ULP line terminators	TRV00880

10 ULP line terminators
｜TRV00880

| 10 RJ45／RJ45 male cord $\mathrm{L}=0.3 \mathrm{~m}$ | TRV00803 |
| :--- | :--- | :--- |

10 RJ45／RJ45 male cord $L=0.6 \mathrm{~m}$
TRV00806
5 RJ45／RJ45 male cord $L=1 \mathrm{~m}$
5 RJ45／RJ45 male cord $L=2 \mathrm{~m}$
5 RJ45／RJ45 male cord $L=3 \mathrm{~m}$
TRV00810
TRV00820
TRV00830

[^7]
Spare parts: ComPact NS1600b to 3200 Connection, locking and installation accessories

	1600/2500/3200 A	$3 P$				33975 33976
	Installation manual					33969
Electrical auxiliaries						
Indication contacts (1 part)						
	OF, SD, SDE	$6 \mathrm{~A}-240 \mathrm{~V}$				29450
		Low level				29452
	Note: up to 3 OF, 1 SD and 1 SDE can be connected.					
	Installation manual					33969
Instantaneous voltage releases (1 part)						
				Delay unit	R (non-adjustable)	$\mathbf{R r}$ (adjustable)
	12 V DC	33658				
	24/30 V DC, 24 V AC	33659	33668			
	48/60 V DC, 48 V AC	33660	33669	48/60 V AC/DC		33680
	100/130 V AC/DC	33661	33670	100/130 V AC/DC	33684	33681
	200/250 V AC/DC	33662	33671	200/250 V AC/DC	33685	33682
	277 V AC	33663				
	380/480 V AC	33664	33673	380/480 V AC/DC		33683
	Installation manual	33969				
Locking						
Removable toggle locking system / 1 part						
	Locking by 3 padlocks					33996
	Installation manual					33969
	Fixed toggle locking system / 1 part					
	Locking by 3 padlocks					32631
	Installation manual					33969
Installation accessories						
Escutcheon / 1 part						
						33929
Interphase barriers / 3 parts						
						33998
	Installation manual					33969
Toggle extension / 1 part						
	NS3200 toggle extension for replacement					33997
	Installation manual					33969

Spare parts: ComPact NS1600b to 3200
 Micrologic control unit, external sensor

Accessories for Micrologic control units

Source ground return (SGR) earth-fault protection + Vigi cable / 1 part

	External sensor (SGR)	33579
	MDGF summing module	48891

Rectangular sensors			
	Inside dimensions (mm)	le (A)	
1	470×160	3200	33574

External power supply module (AD) / 1 part

	24-30 V DC	LV454440
	48-60 V DC	LV454441
	100-125 V DC	LV454442
	110-130 V AC	LV454443
	200-240 V AC	LV454444

	Hand held test kit (HHTK)	33594
	Full function test kit (FFTK)	33595
	Test report edition come from FFTK	34559
	FFTK test cable 2 pin for STR trip unit	34560
	FFTK test cable 7 pin for Micrologic trip unit	33590

Order form: ComPact NS630b to NS3200 Circuit breakers and switch-disconnectors

Rotary handles for NS630b/1600 fixed and withdrawable device

operated devices	(by transparent cover + padlocks
$(\mathrm{NS} 630 \mathrm{~b} / 1600)$	OFF position locking:

Micrologic control unit functions:
2.0: basic protection (long time + inst.)
5.0: selective protection (long time + short time + inst.)
6.0: selective + earth-fault protection
(long time + short time + inst. + earth-fault)
7.0: selective + earth-leakage protection
(long time + short time + inst. + earth-leakage)

Life Is Un
 Schneider S Electric

Schneider Electric Industries SAS

35, rue Joseph Monier
CS 30323
92506 Rueil Malmaison Cedex
France
RCS Nanterre 954503439
Capital social 896313776 €
www.se.com

[^0]: (See Source-changeover catalogue for dimensions, connections and electrical drawings).

[^1]: F Motor mechanism (MCH)
 G Breaker ULP cord
 H I/O application module
 I ULP cable
 J IFE module
 K IFM module

[^2]: [1] See catalogue "Source changeover systems", ref. LVPED211022EN.

[^3]: G5 FDM128
 H1
 Connection kit for connectors
 12 Sealable terminal shield
 11 Extended rotary handle
 Direct rotary handle

[^4]: 1] Spreaders, vertical connection adapters and cable lugs adapters are not compatible with voltages u 500 V .
 [2] Mandatory for voltages u 500 V unless using the bare-cable connector + terminal shield kit.
 [3] Mandatory for fixed devices with L and LB performance levels, whatever the voltage.
 [4] Mandatory for fixed front-connection versions with vertical connection adapters oriented towards the front.

[^5]: [1] For a circuit breaker mounted in horizontal position, the derating to be applied is equivalent to that of a front or horizontal rear connected circuit breaker.

[^6]: Note: select in addition the connection accessories, device accessories and auxiliaries, control-unit accessories and communications option, as required

[^7]: ［1］For measurement display with Micrologic A，E，P．
 ［2］www．schneider－electric．com．

