Industrial

Pressure and

Vacuum Switches

9012G, 9016G, and XMLA, B, C, D

Catalog

Simply easy! ${ }^{\text {TM }}$

Sensors
Selection Guide 8/2

- Selecting a pressure switch 6
■ Terminology 8
OsiSense ${ }^{\text {TM }}$ XML electromechanical pressure and vacuum switches
- Introduction 11
- Selection and specifications. 22
- Accessories 73
- Dimensions 74
- Materials in contact with fluid 77
9012G pressure switches
- Introduction 8/79
- Technical overview. 8/81
■ Selection and specifications. 8/85
- Modifications and accessories 8/91
- Dimensions 96
- Renewal parts 98
9016G vacuum switches
\square Selection and specifications. 94
- Dimensions and modifications 99

Electromechanical pressure and vacuum switches

Applications

Size (pressure range)
Dimensions of case: mm (in.) Width x height x depth
Type of contacts
Degree of protection

Agency listings
Electrical connection
Pressure connection
Catalog number
Pages
Other versions

Control circuits	Adjustable differential: Regulation between two thresholds	Dual-stage switches: Fixed differential, detection at each threshold
Fixed differential:		
Detection of a		
single threshold		

Air, fresh water, sea water, corrosive fluids, viscous products, up to $320^{\circ} \mathrm{F}\left(160^{\circ} \mathrm{C}\right)$ depending on model		
-1 to 500 bar (-14.5 to 7250 psi)		
$35 \times 68 \times 75(1.4 \times 2.7 \times 3.0)$	$46 \times 68 \times 85(1.8 \times 2.7 \times 3.3)$	$35 \times 68 \times 75(1.4 \times 2.7 \times 3.0)$
$1 \mathrm{C} / \mathrm{O}$ single-pole, snap action	$2 \mathrm{C} / \mathrm{O}$ single-pole, simultaneous, snap action	$2 \mathrm{C} / \mathrm{O}$ single-pole, staggered, snap action
IP66 with terminal connections IP65 with plug-in connector	IP66 with terminal connections	IP66 with terminal connections IP65 with plug-in connector

UL, CSA, CCC, BV, LROS, RINA, GL, DNV, VIT-SEPRO

Screw terminals: 1 tapped entry: $1 / 2$ NPT; M20 x 1.5 mm for ISO conduit/cable; or PG 13.5 conduit/cable entry
Connector: DIN 43650, M12
G 14 (BSP female), 1/4" NPTF, PT 1/4 (JIS B0203)
XMLA
XMLB

11
For electromechanical pressure and vacuum switches with alternative tapped cable or fluid entries, consult the
Customer Care Center.

9012G and 9016G
Industrial pressure and vacuum switches

Dimensions of case: mm
Width x height x depth

Degree of protection
Agency listings

Electrical connection
(enclosed devices)

Pressure connection

Catalog number

Pages

Other versions

up to $248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$

Diaphragm: $0.2-675$ psi on falling pressure Piston actuated: $20-9,000$ psi on falling pressure	$0-28.7 \mathrm{inHg}$	$0-25 \mathrm{inHg}$

See page 96 and following pages

SPDT or DPDT double break contacts; SPDT single break contacts	DPST
(SPDT for Form H)	

IP66 conforming to IEC 60957
UL Listed and CSA certified as industrial control equipment

$1 / 2 "-14$ NPTF, PG13.5, or ISO M20; $3 / 4$ "-14 NPTF available only on NEMA 7 and 9.	$1 / 2$ "-14 NPT	$3 \times 1 / 2$ " conduit
NEMA 1 is $1 / 2^{\prime \prime}$ conduit entry, unthreaded.		entry, unthreaded

G1/4 (BSP) female, 1/4"-18 NPTF, 1/4-18 NPT internal or external (depending on model), 1/2"-14 NPT

| 9012GD, GE,
 GF, GR, GS, GT | 9012GA, GB,
 GC, GN, GP, GQ | 9012GGW,
 GHW, GJW | $9012 \mathrm{GKW}, \mathrm{GLW}$,
 GMW | $9016 \mathrm{GAW}, \mathrm{GAR}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | 9016GVG

(1) The hydraulic fluids used for laboratory testing are equivalent to SAE 30 W oils. If oils have less viscosity than this type of oil, leakage can be expected. Schneider Electric does not have test data to support or predict fluid bypass with oils less than SAE 30W.

Steps for selecting a pressure switch

Fixed differential

Adjustable differential

The deciding factors in the selection of a pressure switch for use on control circuits ${ }^{1}$ depend on the requirements of the application. Consider the following requirements to help determine the appropriate catalog number for your application.

1. Setpoints: Do you want to control/monitor one setpoint or two?

- One setpoint: fixed differential
- Two setpoints: adjustable differential

2. Fluids: What fluids do you want to control?

- Hydraulic oil, air, fresh water $\leq 70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$
- Steam
- Hydraulic oil, air, fresh water $\leq 160^{\circ} \mathrm{C}\left(320^{\circ} \mathrm{F}\right)$ - Corrosive fluid $\leq 160^{\circ} \mathrm{C}\left(320^{\circ} \mathrm{F}\right)$
- Sea water $\leq 70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$
- Viscous fluid $\leq 160^{\circ} \mathrm{C}\left(320^{\circ} \mathrm{F}\right)$
- Sea water $\leq 160^{\circ} \mathrm{C}\left(320^{\circ} \mathrm{F}\right)$

Ensure that the wetted parts of the switch are compatible with the system fluid.
3. Pressure range: What pressure range does the system experience?

Note: Select pressure settings that fall within the middle 80% of the pressure range. The pressure applied during a normal cycle should never exceed the maximum range value listed for the switch. Pressure surges should be less than the maximum allowable pressure listed for the switch.

Rated pressure			
XML		9012G / 9016 G (a)	
psi	bar	psi	bar
-14.5 to -4.06	-1 to -0.28	0 to 28 inHg	
-14.5 to -2.03	-1 to -0.14	0 to 25 inHg	
-2.9 to -0.029	-0.2 to -0.02	5 to 25 inHg	6GVG only)
-7.25 to 72.5	-0.5 to 5	0.2 to 10	0.01 to 0.69
0 to 0.725	0 to 0.05	1 to 40	0.07 to 2.76
0 to 5.075	0 to 0.35	1.5 to 75	0.10 to 5.17
0 to 14.5	0 to 1	3 to 150	0.21 to 10.34
0 to 36.25	0 to 2.5	5 to 250	0.34 to 17.24
0 to 58	0 to 4	13 to 425	0.90 to 29.30
0 to 145	0 to 10	20 to 675	1.38 to 46.54
0 to 290	0 to 20	20 to 1000	1.38 to 68.95
0 to 507.5	0 to 35	90 to 2900	6.21 to 199.95
0 to 580	0 to 40	170 to 5600	11.72 to 386.11
0 to 1015	0 to 70	270 to 9000	18.62 to 620.53
0 to 2320	0 to 160	0 to 75 (b)	0 to 5.17 (b)
0 to 4350	0 to 300	0 to 175 (b)	0 to 12.07 (b)
0 to 7250	0 to 500	0 to 500 (b)	0 to 34.47 (b)
		0 to 5000 (b)	0 to 344.74 (b)

(a) For 9016G vacuum switches, the unit of rated pressure is inHg.
(b) Pressure switches for differential-pressure operation.
4. Surges: How frequent are surges in your system, and what is their maximum pressure level? Applications experiencing frequent or high-pressure surges may require a device with a higher pressure range
5. Differential: The required differential may exclude some pressure range choices.
(1) For switches used on power circuits, see catalog 9013CT9701, Commercial Pressure Switches, Class 9013 Types F and G.
6. Enclosure: What type of enclosure do you need?

- Open style
- NEMA Type 7, 9
- NEMA Type 1
- NEMA Type 4, 4X, 13 / IP66, IP65

7. Output: What output type do you require?

- SPDT contacts, 1 N/O, 1 N/C
- Dual stage, 1 SPDT contact each stage, 1 N/O, 1 N/C
- 2 SPDT contacts, 1 N/O, 1 N/C
- Horsepower rated, 9016GVG vacuum switch only

8. Electrical connection: What type of electrical connection do you require?

- $1 / 2$ "- 14 NPTF
- 3/4-14 NPTF (available only on NEMA 7 \& 9)
- ISO M20 metric threads
- Type 13 (PG 13.5) metric threads
- No threaded connection (open style or NEMA 1 only)

9. Pressure connection: What type of pressure connection do you require?

- $1 / 4$ "- 18 NPTF (female)
- $1 / 22^{\prime \prime}-14$ NPT
- PT ¼ (JIS B0203)
- G 1/4 BSP (female) metric thread
- 7/16"-20 UNF-2B

10. Special features: Do you require any special features?

See the modification table on page 8/91 for available modifications for 9012 and 9016G pressure switches. (Form designations are added to the end of the part number of the standard device for these products.) Some examples are:

- Pilot light
- Prewired receptacles
- External range adjustment
- Range scale window
- Special factory pressure settings
- Pressure connections

When switches must be factory set and only one setting is identified, specify whether this setting is on rising or falling pressure. See "Special factory setting specified (If indicating only one special setting, specify whether this setting is on increasing or decreasing pressure.)" in the modification table on page 8/91.

11. System response time

- If system response time is critical, select a switch with a volumetric displacement that is compatible with the overall system. See the table below .

Volumetric displacement of 9012G pressure switches				
Class 9012 Type	Volumetric displacement (1) $\left(\mathbf{i n}^{3}\right)$	Volumetric displacement (1) $\left(\mathbf{c m}^{3}\right)$		
GAR, GAW, GDR, GDW-1 \& 21	0.20774	3.40422	$⿻$	1.15385
:---				
GAR, GAW, GDR, GDW-2 \& 22				

[^0]
Terminology
 \section*{Measuring range}

The measuring range (MR) of a pressure sensor corresponds to the difference between the upper and lower values measured by the load cell. It ranges between 0 and the pressure corresponding to the size of the sensor.

Operating range

The operating range of a pressure transmitter corresponds to its measuring range. Within this range, its analog output signal varies between 4 and 20 mA or 0 and 10 V , and is proportional to the measured pressure.
The operating range of a pressure or vacuum switch is the difference between the values of the minimum low setpoint (PB) and the maximum high setpoint (PH).

Precision

This includes linearity, hysteresis, repeat accuracy, and setting tolerances. It is expressed as a percentage of the measuring range of the load cell (\%MR).

Signal

Pressure

Pressure

Pressure

The linearity is the maximum deviation between the real transmitted curve and the ideal curve.

The hysteresis is the maximum deviation between the rising pressure curve and the falling pressure curve.

The repeat accuracy is the maximum drift encountered at varying pressures under given conditions.

Temperature drift

The precision of a pressure sensor is susceptible to variation due to the operating temperature.

Zero point drift, proportional to the temperature, is expressed as $\% \mathrm{MR} /{ }^{\circ} \mathrm{C}$.

Sensitivity drift, proportional to the temperature, is expressed as $\% \mathrm{MR} /{ }^{\circ} \mathrm{C}$.

Terminology (continued)
 Switching point on rising pressure (PH)

This is the upper pressure setting at which the output of the electronic pressure or vacuum switch changes state on rising pressure.

Switching point on falling pressure (PB)

This is the lower pressure setting at which the output of the electronic pressure or vacuum switch changes state on falling pressure.

Differential

This is the difference between the switching point on rising pressure (PH) and the switching point on falling pressure (PB). The low point can be set at the values indicated on the operating curves shown on the product pages.

Switches with fixed differential

Depending on the switch, either the high or low operating point is adjustable, and the other operating point follows. The window is fixed.

Switches with adjustable differential

An adjustable differential allows independent setting of both operating points.

Spread

For dual-stage switches, the spread indicates the difference between the two operating points on rising pressure (PH 2 and PH 1) and, for vacuum switches, the difference between the two operating points on falling pressure (PB2 and PB1).

Differential-pressure sensing
Switches for differential-pressure sensing measure the difference between two pressures.

Size

Pressure transmitters and pressure switches
This is the maximum value of the operating range.
Vacuum transmitters and vacuum switches
This is the minimum value of the operating range.

Accuracy (switches with setting scale)

The tolerance between the point at which the switch actuates its contacts and the value indicated on the setting scale. Where very high setting accuracy is required (initial installation of the product), it is recommended that you use separate measuring equipment (pressure gauge, etc.).

Repeat accuracy

This is the variation in the operating point between several successive operations, or the tolerance between two consecutive switching operations.

Drift (F)

The tolerance of the operating point throughout the entire service life of the switch.

Terminology

Industrial pressure switches

(continued)

Example 1: With destructive (burst) pressure level

Example 2: With destructive (burst) pressure level and destructive pressure oscillations

Terminology (continued)
 Maximum allowable pressure

The maximum value of an accidental pressure surge of very short duration (a few milliseconds).

Maximum permissible accidental pressure

This is the maximum pressure (excluding pressure surges) that the sensor can occasionally withstand without permanent damage.

Maximum allowable pressure per cycle (Ps)

The maximum pressure level per cycle that the switch can withstand for optimum service life.

Surge

A surge is a high rate of rise in pressure, normally of short duration, caused by starting a pump or by opening and closing a valve. Depending on frequency and duration, surge can reduce service life. Extremely high rates of rise in pressure can be damaging even if they are within the limits of the maximum allowable pressure.

Destruction pressure

Also called burst pressure, the destruction pressure is the pressure value which, if exceeded, is likely to cause serious damage to the sensor-such as leaking, bursting, or permanent damage.

Load resistance of pressure transmitters

The supply voltage and load resistance of a pressure transmitter must be selected according to the following formula:
R load $=\frac{U \text { supply }-U \text { supply min. }}{0.02 \mathrm{~A}}$ (U supply $\min =11 \mathrm{~V}$ for XMLE and 17 V for XMLF)

OsiSense XML
 Electromechanical pressure and vacuum switches

Introduction

XMLB, C

XMLD

XML pressure and vacuum switches for control circuits are used to control the pressure of hydraulic oils, fresh water, sea water, air, steam, corrosive fluids, or viscous products, up to 7250 psi (500 bar).

- XMLA pressure and vacuum switches have a fixed differential and are for detection of a single threshold. They incorporate a $1 \mathrm{C} / \mathrm{O}$ single-pole contact.
■ XMLB pressure and vacuum switches have an adjustable differential and are for regulation between two thresholds. They incorporate a $1 \mathrm{C} / \mathrm{O}$ single-pole contact.
■ XMLC pressure and vacuum switches have an adjustable differential and are for regulation between two thresholds. They incorporate two C/O single-pole contacts.
- XMLD pressure and vacuum switches are dual-stage switches, each stage with a fixed differential, and are for detection at each threshold. They incorporate two C / O single-pole contacts (one per stage).

Setting

XMLA: Pressure and vacuum switches with fixed differential
■ Rising pressure-Operating point PH is set by adjusting the red screw (1).
■ Falling pressure-Operating point PB is not adjustable.
The difference between the trip and reset points of the contact is the inherent differential of the switch (contact differential, friction, etc.).

XMLB and XMLC: Pressure and vacuum switches with adjustable differential

When setting the pressure and vacuum switches, first adjust the operating point on rising pressure (PH), then the operating point on falling pressure (PB).
■ Rising pressure-Operating point PH is set by adjusting the red screw (1).
$■$ Falling pressure-Operating point PB is set by adjusting the green screw (2).
XMLD: Dual-stage pressure and vacuum switches with fixed differential for each threshold

Operating point on rising pressure of stage 1 and stage 2
■ First stage operating point on rising pressure (PH1) is set by adjusting the red screw (1).
■ Second stage operating point on rising pressure (PH2) is set by adjusting the blue screw (2).

Operating point on falling pressure

The operating points on falling pressure (PB1 and PB2) are not adjustable. The difference between the trip and reset points of each contact is the inherent differential of the switch (such as contact differential or friction).

OsiSense XML

Electromechanical pressure and vacuum switches

Specifications	
Environmental specifications	
Conformity to standards	C \in, IEC/EN 60947-5-1, UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$
Product certifications	UL, CSA, CCC, BV, LROS, RINA, GL, DNV, VIT-SEPRO
Protective treatment	Standard version TC. Special version TH
Ambient air temperature, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	For operation: -13 to $+158(-25$ to +70$)$. Storage: -40 to $+158(-40$ to +70$)$
Fluids or products controlled	Hydraulic oils, air, fresh water, sea water, $32-320^{\circ} \mathrm{F}\left(0\right.$ to $\left.160^{\circ} \mathrm{C}\right)$, depending on model Steam, corrosive fluids, viscous products, $32-320^{\circ} \mathrm{F}\left(0\right.$ to $160^{\circ} \mathrm{C}$), depending on model
Materials	Case: zinc alloy. Component materials in contact with fluid: see page 77
Operating position	All positions
Vibration resistance	$4 \mathrm{gn}(30-500 \mathrm{~Hz})$ conforming to IEC 68-2-6 except XML•L35 $\cdots \cdots$, XML•001 $\cdots \cdots$ and XMLBM03 $\cdots \cdots: 2$ gn
Shock resistance	50 gn conforming to IEC 68-2-27 except XML - L35 $\cdots \cdots$, XML $001 \cdots \cdots \cdot$ and XMLBM03 $\cdots \cdots: 30 \mathrm{gn}$
Electric shock protection	Class I conforming to IEC 1140, IEC 536 and NF C 20-030
Degree of protection	Screw terminal models: IP66 conforming to IEC/EN 60529 Connector models: IP65 conforming to IEC/EN 60529
Operating rate (operating cycles/minute)	Piston version switches: up to 60 cycles/minute for temperatures greater than $32{ }^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ Diaphragm version switches: up to 120 cycles/minute for temperatures greater than $32{ }^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$,
Repeat accuracy	<2\%
Pressure connection ${ }^{(1)}$	- G $1 / 4$ (BSP female) conforming to NF E 03-005, ISO 228 - 1/4"-18 NPTF female - PT 1/4 (JIS B0203).
Electrical connection ${ }^{(1)}$ for screw terminal models	- $1 / 2^{\prime \prime}$ NPT electrical connections - ISO M20 $\times 1.5$ tapped entry - DIN Pg 13.5 ($n^{\circ} 13$) tapped entry - Connector models, either M12 or DIN 43650 A: consult the Customer Care Center.

${ }^{(1)}$ See page 21, "Interpretation of the Catalog Number for XML Devices," for more information on specifying the electrical and pressure connections.

Contact block specifications

DC supply -.Power broken in W for 1 million operating cycles					DC supply -- Power broken in W for 5 million operating cycles				
Voltage	V	24	48	120	Voltage	V	24	48	120
mm	W	31	29	26	mm	W	10	7	4

Function

Pressure and vacuum switches control or regulate pressure or vacuum levels in hydraulic or pneumatic systems. They transform the pressure change into a digital electrical signal when the preset operating points are reached.

Switches for control circuits

Switches with control-duty rated electrical contacts, designed for control of contactors, relays, power valves, PLC inputs, etc.

Switches for power circuits

Switches with power electrical contacts (1, 2, or 3 pole) designed for direct switching of single-phase or three-phase motors (pumps, compressors, etc.).

Pressure switch operating principle

Fixed Differential: Detection of a Single Threshold

Fixed differential switches have a single adjustable setting point (either PH or PB). The differential between the high and low points ($\mathrm{PH}-\mathrm{PB}$) depends on the construction of the switch. It is not adjustable.

Example: Contact schematics of XMLA

PH = High point (on rising pressure) $\mathrm{PB}=$ Low point (on falling pressure)

Adjustable Differential: Regulation between Two Thresholds

Adjustable differential switches have setting points for both the high point (PH) and the low point (PB). Both of these points can be independently adjusted.

-Adjustable value
$\mathrm{PH}=$ High point (on rising pressure) $\mathrm{PB}=$ Low point (on falling pressure)

Example: Contact schematics of XMLB

Dual-Stage: Detection of Two Thresholds

Dual-stage switches allow two distinct levels of control to be monitored with one device. Each stage allows detection of a single threshold with a single setting point (fixed differential). Both these points can be independently adjusted. However, for both stages, the differential between the high point and the low point (PH1-PB1 and $\mathrm{PH} 2-\mathrm{PB} 2$) is fixed and depends on the construction of the switch.

-- Adjustable value
--- Nonadjustable value
$\mathrm{PH}=$ High point (on rising pressure) PB = Low point (on falling pressure)

Example: Contact schematics of XMLD

Fixed differential

Adjustable differential

Vacuum switch operating principle

Detection of a single threshold
The switches for detection of a single threshold (fixed differential) have a single adjustable setting point (PH). The differential between the high and low points ($\mathrm{PH}-$ PB) depends on the inherent characteristics of the switch. It is not adjustable.

Regulation between two thresholds

The switches for regulation between two thresholds (adjustable differential) have both a high point setting (PH) and a low point setting (PB). Both of these points can be independently adjusted.

Example: Contact schematics of XMLB
$\stackrel{\oplus}{\sim}$
1

2

Detection of two thresholds

The dual-stage switches, for detection at each threshold, have an adjustable high point setting for each stage (PH 1 and PH 2). Both of these points can be independently adjusted.
For both stages, the differential between the high point and the low point (PH1-PB1 and PH2-PB2) depends on the inherent characteristics of the switch. It is not adjustable.

Maximum allowable accidental pressure

The maximum accidental pressure of XML switches is equal to at least 2.25 times the switch size.
If accidental overpressures occur and their duration is less than 50 milliseconds, the pressure damping device incorporated in the XML switches (sizes 10 bar and greater) reduces the effect.

Electromechanical pressure and vacuum switches

Application range of pressure and vacuum switches types XML, XMA and XMX, for control circuits
On standard loads: Continuous duty, frequent switching.

${ }^{(1)}$ Standard PLC input, type 1
${ }^{(2)}$ Standard PLC input, type 2
${ }^{(3)}$ Switching capacity conforming to IEC 947-5-1, utilization category AC-15, DC-13

B300	240 V	1.5 A
R300	250 V	0.1 A

${ }^{(4)}$ Switching capacity conforming to IEC 947-5-1,
utilization category AC-15, DC-13

B300	120 V	3 A
R300	125 V	0.22 A

PLC: programmable logic controller

Pressure switches	Application range		
XMLA, XMLB, XMLC, XMLD			
XMLE, XMLF, XMLG			

On small loads: The use of electromechanical pressure and vacuum switches with programmable logic controllers is becoming more prevalent. On small loads, the switches maintain a failure rate of less than 1 for 100 million operating cycles. Results may vary depending on application.

OsiSense XML

Electromechanical
pressure and vacuum switches

Selecting the switch size

After establishing the type of switch required for the application (single threshold detection or regulation between two thresholds), the selection of its size depends on the following criteria:

- the differential: difference between the high point (PH) and the low point (PB),
- the maximum pressure allowable per cycle,
- repeat accuracy, precision and minimum drift.

Selecting a fixed differential pressure switch for detecting a single threshold

Main criterion: minimum differential
Example: for a selected high point (PH) of 7 bar

XMLA010.....
Differential $=0.5$ bar

XMLA020.....
Differential = 1 bar

XMLA035..... Differential $=2$ bar

Select an XMLA010… (the lowest size)
Main criterion: tolerance to overpressures
Example: for a selected high point (PH) of 12 bar

XMLA035..... Allowable accidental overpressure $=80$ bar

Select an XMLA035••••• (the highest size)
Main criterion: repeat accuracy, precision and minimum drift Example: for a selected high point (PH) of 18 bar

XMLA020•....
Adjustable from 1-20 bar

XMLA035.....
Adjustable from 1.5-35 bar

Select an XMLA035.....

Converting Units of Pressure

	psi	$\mathbf{k g} / \mathbf{c m}^{\mathbf{2}}$	bar	atm	$\mathbf{m m ~ H g}$ (Torr)	$\mathbf{m m ~ H} \mathbf{~ O}$	$\mathbf{P a}$
$1 \mathrm{psi}=$	1	0.07031	0.06895	0.06805	51.71	703.7	6895
$1 \mathrm{~kg} / \mathrm{cm}^{2}=$	14.22	1	0.98066	0.96784	735.55	10000	98066
$1 \mathrm{bar}=$	14.50	1.0197	1	0.98695	750.06	10197	10^{5}
$1 \mathrm{~atm}=$	14.70	1.0333	1.0132	1	760.0	10333	101325
$1 \mathrm{~mm} \mathrm{Hg}=($ Torr $)$	0.01934	1.360×10^{-3}	1.333×10^{-3}	1.316×10^{-3}	1	13.59	133.3
$1 \mathrm{~mm} \mathrm{H} \mathrm{O}=$	1.421×10^{-3}	10^{-4}	$\sim 10^{-4}$	$\sim 10^{-4}$	0.07361	1	~ 9.80
$1 \mathrm{~Pa}=$	1.45×10^{-4}	1.0197×10^{-5}	10^{-5}	9.869×10^{-6}	7.5×10^{-3}	0.10197	1

[^1]
OsiSense XML
 Electromechanical pressure and vacuum switches

Operating curves: Fixed Differential, Detecting a Single Threshold

Defined by the difference between the minimum and maximum high point (PH) setting values.
For a high set point (PH), the lower point (PB) is fixed and cannot be adjusted.

For a low set point (PB), the higher point (PH) is fixed and cannot be adjusted.

The upper pressure setting at which the pressure or vacuum switch actuates the contacts on rising pressure.
Adjustable throughout the range on rising pressure.

The pressure at which the switch contact changes state on falling pressure.
The lower point (PB) is not adjustable and is entirely dependent on the high point setting (PH) and the inherent differential of the switch.

PH-PB = inherent differential

The difference between the operating point on rising pressure (PH) and the operating point on falling pressure (PB).
This point is not adjustable, so the value of the differential is fixed.

It is the inherent differential of the switch (contact differential, friction, etc.).

Operating point on rising pressure (PH) is 40 bar (set value at which the contact changes state on rising pressure).
The operating point on falling pressure (PB) is 28 bar (fixed value at which the contact returns to its original state).
Conclusion:
the differential is $40-28=12$ bar.

Operating curves: Adjustable Differential, Regulating between Two Thresholds

Adjustment range of the high point

Operating point on rising pressure (PH)

Operating
point on falling pressure (PB)

Differential

Example

1 Maximum differential
2 Minimum differential

Defined by the difference between the minimum and maximum high point (PH) setting values.

The upper pressure setting at which the pressure or vacuum switch actuates the contacts on rising pressure.
Adjustable throughout the range on rising pressure.

The pressure at which the switch contact changes state on falling pressure.
The adjustable differential enables the independent setting of the lower point (PB).

Low point < High point
PH-PB' = inherent differential
PH-PB" = minimum differential
The difference between the operating point on rising pressure (PH) and the operating point on falling pressure (PB).
Note: the low point can be set at any value between PB' and PB".

Operating point on rising pressure (PH) is 22 bar (set value at which the contact changes state on rising pressure).
The operating point on falling pressure (PB) ranges from 4 and 19 bar (set value at which the contact returns to its original state).
Conclusion:
the maximum differential is $22-4=18$ bar,
the minimum differential is
$22-19=3$ bar.

OsiSense XML
 Electromechanical pressure and vacuum switches

Operating curves: Dual-Stage, Fixed Differential, Detection at Each Threshold (switching on rising pressure)

Adjustment
ranges of the ranges of the operating points PH1 and PH2 on rising pressure

Operating point

 PH2 on rising pressure

Operating point PH1
on rising
pressure

Spread

Example:

Determining
operating points
on rising
pressure for the
two stages

The upper pressure setting at which the pressure or vacuum switch actuates contact 1 on rising pressure.

PH1 < PH2
PH2-PH1' = maximum spread
PH2-PH1" = minimum spread
The difference between operating points PH 2 and PH 1 on rising pressure.
Note: operating point PH1 can be set at any value between PH1' and PH1".

Second stage operating point on rising

 pressure $(\mathrm{PH} 2)=20$ bar (set value at which contact 2 changes state on rising pressure). First stage operating point (PH1) can be set between 4.5 and 17 bar on rising pressure.Conclusion:
the maximum spread is:
$20-4.5=15.5$ bar,
the minimum spread is:
$20-17=3$ bar.

Operating curves: Dual-Stage, Fixed Differential, Detection at Each Threshold (switching on rising pressure)
 high point (PH1 or PH2)

Operating
point on rising pressure (PH1 or PH2)

Operating point on falling pressure (PB1 or PB2)

Differential

Example:

stage 1 =
segment EF
stage $2=$
segment GH

1 Maximum spread
2 Minimum spread

Defined by the difference between the minimum and maximum high point (PH 1 or PH 2) setting values for each stage.
For a high set point (PH 1 or PH 2), the lower point (PB1 or PB2) is fixed and cannot be adjusted.
For a low set point (PB1 or PB2), the higher point (PH 1 or PH 2) is fixed and cannot be adjusted.

The upper pressure setting at which the pressure or vacuum switch actuates the contact, for each stage, on rising pressure.
Adjustable throughout the range on rising pressure.

The pressure at which the switch contact changes state, for each stage, on falling pressure.
The lower point (PB) is not adjustable and is entirely dependent on the high point setting (PH) and the inherent differential of the switch.

PH-PB = inherent differential
The difference between the operating point on rising pressure (PH) and the operating point on falling pressure (PB), for each stage. This point is not adjustable, so the value of the differential is fixed. It is the inherent differential of the switch (contact differential, friction, etc.) for each of its two stages.

For stage 2 (segment GH):
Operating point on rising pressure (PH 2) is 20 bar (set value at which contact 2 changes state on rising pressure). The operating point on falling pressure (PB2) is 14 bar (fixed value at which contact 2 returns to its original state).
Conclusion: for stage 2, the differential is: $20-14$ = 6 bar.
Repeat the same procedure for stage 1 (segment EF).

OsiSense XML

Electromechanical pressure and vacuum switches

Interpreting the Catalog Number for XML Devices

Example: XMLA004A2S13

\section*{| Designation |
| :--- |
| XML Pressure Switch |}

Type
Nonadjustable differential, single pole
Adjustable differential, single pole
Adjustable differential, double pole
Nonadjustable differential, double pole
0 to 0.05 (0 to 0.725)
0 to 0.35 (0 to 5.075)

0 to 0.35 (0 to 5.075$)$
-1 to $-0.28(-14.5$ to -4.06$)$

-1 to -0.14 (-14.5 to -2.03)
-0.2 to $-0.02(-2.9$ to -0.029$)$
-0.5 to $5(-7.25$ to 72.5$)$
0 to 1 (0 to 14.5)
0 to 2.5 (0 to 36.25)
0 to 2.5 (0 to 36.25)
0 to 4 (0 to 58)
0 to 4 (0 to 58)
Overpressure 0.30 (4.35)

range
bar (psi)

0 to 10 (0 to 145)
0 to 10 (0 to 145)
0 年

0 to 20 (0 to 290)
0 to 20 (0 to 290)
0 to 35 (0 to 507.5)
0 to 40 (0 to 580)
0 to 70 (0 to 1015)
0 to 160 (0 to 2320)
0 to 300 (0 to 4350)
0 to 500 (0 to 7250)

Diaphragm type

Hydraulic oils, air, fresh, or sea water, $32-158^{\circ} \mathrm{F}\left(0-70^{\circ} \mathrm{C}\right)$
Hydraulic oils, air, fresh, or sea water, $32-320^{\circ} \mathrm{F}\left(0-160^{\circ} \mathrm{C}\right)$
Corrosive fluid

Viscous products

Hydraulic oils or air, $32-140^{\circ} \mathrm{F}\left(0-60^{\circ} \mathrm{C}\right)$
Input fluid \quad Fresh or sea water, $32-320^{\circ} \mathrm{F}\left(0-160^{\circ} \mathrm{C}\right.$
Vacuum type with diaphragm
Hydraulic oils, air, fresh or sea water, $32-158^{\circ} \mathrm{F}\left(0-70^{\circ} \mathrm{C}\right)$
Hydraulic oils, air, fresh or sea water, $32-320^{\circ} \mathrm{F}\left(0-160^{\circ} \mathrm{C}\right)$

Piston type

Hydraulic oils or air, $32-320^{\circ} \mathrm{F}\left(0-160^{\circ} \mathrm{C}\right)$
Fresh or sea water, $32-320^{\circ} \mathrm{F}\left(0-160^{\circ} \mathrm{C}\right)$
Corrosive fluid, $32-320^{\circ} \mathrm{F}\left(0-160^{\circ} \mathrm{C}\right)$

	Corrosive fluid, 32-320 ${ }^{\circ} \mathrm{F}\left(0-160^{\circ} \mathrm{C}\right)$
Display	Not provided
	Provided
Electrical connection	Threaded hole
	DIN 43650 connector
	M12 threaded connector (Micro Change type)
Contact type	Dry contact
Entry type	European
	Pressure G 1/4 (BSP female) G 1-1/4 for viscous products (input fluid identifier $=\mathrm{P}$)
	Electrical Type 13 (Pg 13.5)
	Pressure G 1/4 (BSP female) G 1-1/4 for viscous products (input fluid identifier $=P$)
	Electrical ISO M20
	U.S.A.
	Pressure 1/4"-18 NPTF
	Electrical 1/2"-14 NPT
	Japan
	Pressure PT 1/4 (JIS B0203)
	Electrical 1/2 in. PF (JIS B0202)
Options	May indicate factory setting

Options
May indicate factory setting

Catalog number

Catalog number							
XML							
	A						
	B						
	C						
	D						
		L05					
		L35					
		S35					
		M01					
		M02					
		M03					
		M05					
		001					
		002					
		S02					
		004					
		S04					
		010					
		S10					
		020					
		S20					
		035					
		040					
		070					
		160					
		300					
		500					
			A				
			B				
			C				
			P				
			R				
			S				
			V				
			T				
			D				
			E				
			N				
				1			
				2			
					S		
					C		
					D		
						1	
						1	
						2	
						3	
						4	
						4	
							...

Size: - $\mathbf{1}$ bar ($\mathbf{- 1 4 . 5} \mathbf{~ p s i)}$
Fixed differential, for detection of a single threshold
$1 \mathrm{C} / \mathrm{O}$ single-pole contact
XMLA vacuum switches

Adjustable range of operating point (PB)

(falling pressure)
-0.28 to -1 bar (-4.06 to -14.5 psi)
Catalog numbers

Fluids controlled	Hydraulic oils, fresh water, sea water, air, up to $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$	XMLAM01V2S13	XMLAM01V2S11	XMLAM01V2C11
For materials in contact with fluid, see page 77 .	Hydraulic oils, fresh water, sea water, air, corrosive fluids, up to $320^{\circ} \mathrm{F}\left(160^{\circ} \mathrm{C}\right)$	XMLAM01T2S13	XMLAM01T2S11	XMLAM01T2C11
Pressure connection		1/4"-18 NPTF	G 1/4-19 BSP	G 1/4-19 BSP
Electrical connection	Conduit/cable entry	1/2" NPT	Pg 13.5	DIN 43650A, 4-pin male.
	Terminals	1×0.2 to $2 \times 2.5 \mathrm{~mm}^{2}(1 \times 24$ to 2×14 AWG)		For suitable female connector, see page 73 .
Weight, lb (kg)		1.51 (0.685)		1.58 (0.715)
Supplementary specifications (not shown under general specifications)				

Inherent differential (add to PB to get PH)	At low setting	At high setting	$0.24 \mathrm{bar} \pm 0.05(3.48 \mathrm{psi} \pm 0.72)$
Maximum allowable pressure	Per cycle	$5 \mathrm{bar}(72.5 \mathrm{psi})$	
Accidental	$9 \mathrm{bar}(130.5 \mathrm{psi})$		
Destruction pressure	$18 \mathrm{bar}(261 \mathrm{psi})$		
Vacuum switch style	Diaphragm		
Operating curves		Connection	

$\underset{\sim}{\text { Time }}$

Connector model

Vacuum switch connector pin view

Other versions
For switches with alternative tapped cable entries, consult the Customer Care Center.

OsiSense XML
Electromechanical pressure and vacuum switches

Size: -1 bar (-14.5 psi)
Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

Other versions
For switches with alternative tapped cable entries, consult the Customer Care Center.

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size: -1 bar (-14.5 psi)
Adjustable differential, for regulation between two thresholds
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts

[^2]OsiSense XML
Electromechanical pressure and vacuum switches

Size: -1 bar (-14.5 psi)
Dual-stage, fixed differential, for detection at each threshold
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts (one per stage)
XMLD vacuum switches Without setting scale

Adjustable range of operating points (falling pressure)	2nd stage operating point (PB2)	-0.12 to -1 bar (-1.74 to -14.5 psi)	
	1st stage operating point (PB1)	-0.10 to -0.98 bar (-1.45 to -14.21 psi)	
Spread between the two stages (PB2-PB1)		0.02 to 0.88 bar (0.29 to 12.76 psi)	
Catalog numbers			
Fluids controlled For materials in contact with fluid, see page 77 .	Hydraulic oils, fresh water, sea water, air, up to $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$	XMLDM02V1S13	XMLDM02V1S11
	Hydraulic oils, fresh water, sea water, air, corrosive fluids, up to $320^{\circ} \mathrm{F}\left(160^{\circ} \mathrm{C}\right)$	XMLDM02T1S13	XMLDM02T1S11
Pressure connection		1/4"-18 NPTF	G 1/4-19
Electrical connection	Conduit/cable entry	$1 / 2$ " NPT	Pg 13.5
	Terminals	1×0.2 to $2 \times 2.5 \mathrm{~mm}^{2}$ (1×24 to 2×14 AWG)	
Weight, lb (kg)		2.24 (1.015)	
Supplementary specifications (not shown under general specifications)			
Inherent differential (add to PB1/PB2 to get PH1/PH2)	At low setting	0.1 bar ± 0.035 ($1.45 \mathrm{psi} \pm 0.51$)	
	At high setting	0.1 bar ± 0.02 (1.45 psi ± 0.29)	
Maximum allowable pressure	Per cycle	5 bar (72.5 psi)	
	Accidental	$9 \mathrm{bar}(130.5 \mathrm{psi})$	
Destruction pressure		18 bar (261 psi)	
Vacuum switch style		Diaphragm	
Operating curves			

High setting trip points of contacts 1 and 2

1 Maximum differential
2 Minimum differential

EF Contact 1 (stage 1) GH Contact 2 (stage 2)

Inherent differential of contacts 1 and 2
Rising pressure

Connection: Terminal model

Contact 1 (stage 1) Contact 2 (stage 2)

Other versions
For switches with alternative tapped cable entries, consult the Customer Care Center.

Selection and
specifications (continued)

OsiSense XML

Electromechanical pressure and vacuum switches

Size: - $\mathbf{2 0 0}$ mbar (-2.9 psi)
Adjustable differential, for regulation between two thresholds $1 \mathrm{C} / \mathrm{O}$ single-pole contact

Other versions

[^3]
OsiSense XML

Electromechanical pressure and vacuum switches

Size 50 mbar (0.72 psi)
Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

Adjustable range of operating point (PH) (rising pressure)		$2.6-50 \mathrm{mbar}$ (0.038-0.72 psi)	
Catalog numbers			
Fluids controlled For materials in contact with fluid, see page 77 .	Hydraulic oils, air, up to $320^{\circ} \mathrm{F}$ $\left(160^{\circ} \mathrm{C}\right)$	XMLBL05R2S13	XMLBL05R2S11
	Fresh water, sea water, corrosive fluids, up to $320^{\circ} \mathrm{F}\left(160^{\circ} \mathrm{C}\right)$	XMLBL05S2S13	XMLBL05S2S11
Pressure connection		1/4"-18 NPTF	G 1/4-19
Electrical connection	Conduit/cable entry	1/2" NPT	Pg 13.5
	Terminals	1×0.2 to $2 \times 2.5 \mathrm{~mm}^{2}$ (1×24 to 2×14 AWG)	
Weight, lb (kg)		5.34 (2.420)	
Supplementary specifications (not shown under general specifications)			
Possible differential (subtract from PH to get PB)	Min. at low setting	1.4 mbar, $-0.8,+1.1$ (0.02 psi, $-0.01,+0.02$)	
	Min. at high setting	$4 \mathrm{mbar} \pm 1.4$ (0.06 psi ± 0.02)	
	Max. at high setting	40 mbar (0.58 psi)	
Maximum allowable pressure	Per cycle	$62.5 \mathrm{mbar}(0.90 \mathrm{psi})$	
	Accidental	$112.5 \mathrm{mbar}(1.63 \mathrm{psi})$	
Destruction pressure		225 mbar (3.26 psi)	
Pressure switch style		Diaphragm	

${ }^{(1)}$ For, replace $\mathbf{S 1 3}$ with $\mathbf{S 1 1}$ (example: XMLBL05R2S13 becomes XMLBL05R2S11).
Operating curves Connection: Terminal model

[^4]Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 5 bar (72.5 psi)
Adjustable differential, for regulation between two thresholds
$1 \mathrm{C} / \mathrm{O}$ single-pole contact
XMLB vacu-pressure switches With setting scale

Adjustable range of operating point (PH) (rising pressure)	-0.5 to 5 bar (-7.25 to 72.5 psi$)$

Catalog numbers				
Fluids controlled For materials in contact with fluid, see page 77 .	Hydraulic oils, fresh water, sea water, air, up to $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$	XMLBM05A2S13	XMLBM05A2S11	XMLBM05A2C11
	Hydraulic oils, fresh water, sea water, air, up to $320^{\circ} \mathrm{F}\left(160^{\circ} \mathrm{C}\right)$	XMLBM05B2S13	XMLBM05B2S11	XMLBM05B2C11
	Corrosive fluids, up to $320^{\circ} \mathrm{F}\left(160^{\circ} \mathrm{C}\right)$	XMLBM05C2S13	XMLBM05C2S11	XMLBM05C2C11
	Viscous products, up to $320^{\circ} \mathrm{F}\left(160^{\circ} \mathrm{C}\right)$ (G1-1/4" pressure connection)	XMLBM05P2S13	XMLBM05P2S11	XMLBM05P2C11
Pressure connection		1/4"-18 NPTF	G 1/4-19	G 1/4-19
Electrical connection	Conduit/cable entry	1/2" NPT	Pg 13.5	DIN 43650A, 4-pin male
	Terminals	1×0.2 to $2 \times 2.5 \mathrm{~mm}^{2}(1 \times 24$ to 2×14 AWG)		For suitable female connector, see page 73.
Weight, lb (kg)		1.51 (0.685)		1.58 (0.715)

Supplementary specifications (not shown under general specifications)

Possible differential (subtract from PH to get PB)	Min. at low setting	0.5 bar ± 0.05 (7.25 psi ± 0.72)	
	Min. at high setting	0.5 bar ± 0.05 (7.25 psi ± 0.72)	
	Max. at high setting	6 bar (87 psi)	
Maximum allowable pressure	Per cycle	6.25 bar (90.62 psi)	
	Accidental	11.25 bar (163.12 psi)	
Destruction pressure		23 bar (333.5 psi)	
Vacu-pressure switch style		Diaphragm	
Operating curves			Connection
$\stackrel{\text { ¢ }}{ }$ bar		Pressure	Terminal model

1 Maximum differential
2 Minimum differential
-Adjustable value

[^5]
OsiSense XML

Electromechanical pressure and vacuum switches

Size 5 bar (72.5 psi)
Adjustable differential, for regulation between two thresholds $2 \mathrm{C} / \mathrm{O}$ single-pole contacts

XMLC vacu-pressure switches

Other versions For switches with alternative tapped cable entries, consult the Customer Care Center.

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 350 mbar (5.07 psi)
Adjustable differential, for regulation between two thresholds
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

[^6]
OsiSense XML

Electromechanical pressure and vacuum switches

Size 350 mbar (5.07 psi)
Adjustable differential, for regulation between two thresholds $2 \mathrm{C} / \mathrm{O}$ single-pole contacts

XMLC pressure switches

Other versions
For switches with alternative tapped cable entries, consult the Customer Care Center.

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 350 mbar (5.07 psi)
Dual-stage, fixed differential, for detection at each threshold
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts (one per stage)

OsiSense XML

Electromechanical pressure and vacuum switches

Size 1 bar (14.5 psi)
Fixed differential, for detection of a single threshold
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

XMLA pressure switches

Other versions
For switches with alternative tapped cable entries, consult the Customer Care Center.

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 1 bar (14.5 psi)
Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

XMLB pressure switches

OsiSense XML

Electromechanical pressure and vacuum switches

Size 1 bar (14.5 psi)
Adjustable differential, for regulation between two thresholds
2 C/O single-pole contacts
XMLC pressure switches

[^7]Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 1 bar (14.5 psi)
Dual-stage, fixed differential, for detection at each threshold
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts (one per stage)

XMLD pressure switches Without setting scale

Adjustable range of each operating point (rising pressure)	2nd stage operating point (PH2)	0.1
	1st stage operating point (PH1)	0.0

Spread between the two stages (PH2-PH1)	$0.08-0.73$ bar (1.16-10.59 psi)

Catalog numbers

Fluids controlled	Hydraulic oils, air, up to $320^{\circ} \mathrm{F}$ $\left(160^{\circ} \mathrm{C}\right)$	XMLD001R1S13	XMLD001R1S11
For materials in contact with fluid, see page 77 .	Fresh water, sea water, corrosive fluids, up to $320^{\circ} \mathrm{F}\left(160^{\circ} \mathrm{C}\right)$	XMLD001S1S13	XMLD001S1S11
Pressure connection		1/4"-18 NPTF	G 1/4-19
Electrical connection	Conduit/cable entry	$1 / 2$ " NPT	Pg 13.5
	Terminals	1×0.2 to $2 \times 2.5 \mathrm{~mm}^{2}(1 \times 24$ to 2×14 AWG)	
Weight, lb (kg)		5.68 (2.575)	
Supplementary specifications (not shown under general specifications)			

Supplementary specifications (not shown under general specifications)

Other versions

Selection and specifications (continued)
 OsiSense XML

 Electromechanical

 Electromechanical pressure and vacuum switches

 pressure and vacuum switches}

Size 2.5 bar ($\mathbf{3 6 . 2 5} \mathbf{~ p s i)}$
Fixed differential, for detection of a single threshold
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

XMLA pressure switches

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 2.5 bar (36.25 psi)
Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact

Adjustable range of operating point
(PH) (rising pressure)
$0.3-2.5$ bar (4.35-36.25 psi)
Catalog numbers

[^8]Selection and specifications (continued)
\title{ OsiSense XML }
\section*{Electromechanical pressure and vacuum switches}

Size 2.5 bar (36.25 psi)
Adjustable differential, for regulation between two thresholds $2 \mathrm{C} / \mathrm{O}$ single-pole contacts

Other versions

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 2.5 bar (36.25 psi)
Dual-stage, fixed differential, for detection at each threshold
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts (one per stage)

Selection and specifications (continued)
\title{ OsiSense XML }
Electromechanical pressure and vacuum switches

Size 4 bar (58 psi)
Fixed differential, for detection of a single threshold
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

XMLA pressure switches

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 4 bar (58 psi)
Adjustable differential, for regulation between 2 thresholds
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

XMLB pressure switches

[^9]
OsiSense XML

Electromechanical pressure and vacuum switches

Size 4 bar (58 psi)
Adjustable differential, for regulation between two thresholds 2 C/O single-pole contacts

XMLC pressure switches

[^10]Selection and
specifications (continued)

OsiSense XML

Electromechanical pressure and vacuum switches

Size 4 bar (58 psi)
Dual-stage, fixed differential, for detection at each threshold
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts (one per stage)

XMLD pressure switches

Without setting scale

Adjustable range of each operating point rising pressure)	2nd stage operating point (PH2)	0.40-4 bar (5.8-58 psi)	
	1st stage operating point (PH1)	0.19-3.79 bar (2.76-54.96 psi)	
Spread between the two stages (PH2-PH1)		0.21-2.18 bar (3.05-31.61 psi)	
Catalog numbers			
Fluids controlled For materials in contact with fluid, see page 77.	Hydraulic oils, fresh water, sea water, air, up to $320^{\circ} \mathrm{F}\left(160^{\circ} \mathrm{C}\right)$	XMLD004B1S13	XMLD004B1S11
	Corrosive fluids, up to $320^{\circ} \mathrm{F}$ $\left(160^{\circ} \mathrm{C}\right)$	XMLD004C1S13	XMLD004C1S11
Pressure connection		1/4"-18 NPTF	G 1/4-19
Electrical connection	Conduit/cable entry	1/2" NPT	Pg 13.5
	Terminals	1×0.2 to $2 \times 2.5 \mathrm{~mm}^{2}$ (1×24 to 2×14 AWG)	
Weight, lb (kg)		2.24 (1.015)	
Supplementary specifications (not shown under general specifications)			

Inherent differential (subtract from PH1/PH2 to get PB1/PB2)At low setting At high setting	$0.15 \mathrm{bar} \pm 0.03(2.18 \mathrm{psi} \pm 0.43)$	
Maximum allowable pressure	Per cycle	$5 \mathrm{bar}(72.5 \mathrm{psi})$
Accidental	$9 \mathrm{bar}(130.5 \mathrm{psi})$	
Destruction pressure	$18 \mathrm{bar}(261 \mathrm{psi})$	
Pressure switch style	Diaphragm	
Operating curves		

High setting trip points of contacts 1 and 2

Other versions
For switches with alternative tapped cable entries, consult the Customer Care Center.

Contact 2 (stage 2) Contact 1 (stage 1)

OsiSense XML

Electromechanical pressure and vacuum switches

Size 10 bar (145 psi)
Fixed differential, for detection of a single threshold
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

XMLA pressure switches

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 10 bar (145 psi)
Adjustable differential, for regulation between two thresholds 1 C/O single-pole contact
XMLB pressure switches

[^11]
OsiSense XML

Electromechanical pressure and vacuum switches

Size 10 bar (145 psi)
Adjustable differential, for regulation between two thresholds $2 \mathrm{C} / \mathrm{O}$ single-pole contacts

XMLC pressure switches

Other versions
For switches with alternative tapped cable entries, consult the Customer Care Center.

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 10 bar (145 psi)
Dual-stage, fixed differential, for detection at each threshold
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts (one per stage)

[^12]
OsiSense XML

Electromechanical pressure and vacuum switches

Size 20 bar (290 psi)
Fixed differential, for detection of a single threshold
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

XMLA pressure switches

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 20 bar (290 psi)
Adjustable differential, for regulation between two thresholds
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

Other versions
For switches with alternative tapped cable entries, consult the Customer Care Center.

OsiSense XML

Electromechanical pressure and vacuum switches

Size 20 bar (290 psi)
Adjustable differential, for regulation between two thresholds $2 \mathrm{C} / \mathrm{O}$ single-pole contacts

XMLC pressure switches

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 20 bar (290 psi)
Dual-stage, fixed differential, for detection at each threshold
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts (one per stage)

XMLD pressure switches

OsiSense XML
Electromechanical pressure and vacuum switches

Size 35 bar (507.5 psi)
Fixed differential, for detection of a single threshold
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

XMLA pressure switches

Selection and
specifications (continued)

OsiSense XML

Electromechanical pressure and vacuum switches

Size 35 bar ($\mathbf{5 0 7 . 5} \mathbf{~ p s i)}$
Adjustable differential, for regulation between two thresholds $1 \mathrm{C} / \mathrm{O}$ single-pole contact
XMLB pressure switches With setting scale

[^13]
OsiSense XML

Electromechanical pressure and vacuum switches

Size 35 bar (507.5 psi)
Adjustable differential, for regulation between two thresholds
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts

XMLC pressure switches

Other versions For switches with alternative tapped cable entries, consult the Customer Care Center.

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 35 bar (507.5 psi)
Dual-stage, fixed differential, for detection at each threshold
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts (one per stage)
XMLD pressure switches Without setting scale

[^14]
Selection and specifications (continued)
 OsiSense XML
 Electromechanical pressure and vacuum switches

Size 70 bar (1015 psi)
Fixed differential, for detection of a single threshold
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

XMLA pressure switches

Other versions For switches with alternative tapped cable entries, consult the Customer Care Center.

Selection and
specifications (continued)

OsiSense XML

Electromechanical pressure and vacuum switches

Size 70 bar (1015 psi)
Adjustable differential, for regulation between two thresholds
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

XMLB pressure switches

OsiSense XML

Electromechanical pressure and vacuum switches

Size 70 bar (1015 psi)
Adjustable differential, for regulation between two thresholds
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts

XMLC pressure switches

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 70 bar (1015 psi)
Dual-stage, fixed differential, for detection at each threshold
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts (one per stage)

XMLD pressure switches

[^15]
OsiSense XML

Electromechanical pressure and vacuum switches

Size 160 bar (2320 psi)
Fixed differential, for detection of a single threshold
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

XMLA pressure switches

Selection and
specifications (continued)

OsiSense XML

Electromechanical pressure and vacuum switches

Size 160 bar (2320 psi)
Adjustable differential, for regulation between two thresholds
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

XMLB pressure switches

Other versions
For switches with alternative tapped cable entries, consult the Customer Care Center.

Selection and specifications (continued)
\title{ OsiSense XML }
\section*{Electromechanical pressure and vacuum switches}

Size 160 bar (2320 psi)
Adjustable differential, for regulation between two thresholds
2 C/O single-pole contacts

XMLC pressure switches

Other versions
For switches with alternative tapped cable entries, consult the Customer Care Center.

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 160 bar (2320 psi)
Dual-stage, fixed differential, for detection at each threshold
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts (one per stage)

XMLD pressure switches Without setting scale

High setting trip points of contacts 1 and 2

1 Maximum differential 2 Minimum differential

Inherent differential of contacts 1 and 2

EF Contact 1 (stage 1)
GH Contact 2 (stage 2)

—Adjustable value
--- Nonadjustable value

Connection

Terminal model
Contact 2 (stage 2) Contact 1 (stage 1)

For switches with alternative tapped cable entries, consult the Customer Care Center.

Selection and specifications (continued)
\title{ OsiSense XML }
\section*{Electromechanical pressure and vacuum switches}

Size 300 bar (4350 psi)
Fixed differential, for detection of a single threshold
$1 \mathrm{C} / \mathrm{O}$ single-pole contact

XMLA pressure switches

Selection and
specifications (continued)

OsiSense XML

Electromechanical pressure and vacuum switches

Size 300 bar (4350 psi)
Adjustable differential, for regulation between two thresholds $1 \mathrm{C} / \mathrm{O}$ single-pole contact

XMLB pressure switches

OsiSense XML

Electromechanical pressure and vacuum switches

Size 300 bar (4350 psi)
Adjustable differential, for regulation between two thresholds
2 C/O single-pole contacts

XMLC pressure switches

Other versions For switches with alternative tapped cable entries, consult the Customer Care Center.

Selection and
specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 300 bar (4350 psi)
Dual-stage, fixed differential, for detection at each threshold
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts (one per stage)
XMLD pressure switches Without setting scale

Adjustable range of each operating point (rising pressure)	2nd stage operating point (PH2)	36-300 bar (522-4350 psi)	
	1st stage operating point (PH1)	25-289 bar (362.5-4190.5 psi)	
Spread between the two stages (PH2-PH1)		11-189 bar (159.5-2740.5 psi)	
Catalog numbers			
Fluids controlled For materials in contact with fluid, see page 77 . Only for control of group 2 fluids, in accordance with directive 97/23/EEC.	Hydraulic oils, up to $320^{\circ} \mathrm{F}\left(160^{\circ} \mathrm{C}\right)$	XMLD300D1S13	XMLD300D1S11
	Fresh water, sea water, up to $320^{\circ} \mathrm{F}$ $\left(160^{\circ} \mathrm{C}\right)$	XMLD300E1S13	XMLD300E1S11
	Corrosive fluids, air, up to $320^{\circ} \mathrm{F}$ $\left(160^{\circ} \mathrm{C}\right)$	XMLD300N1S13	XMLD300N1S11
Pressure connection		1/4"-18 NPTF	G 1/4-19
Electrical connection	Conduit/cable entry	$1 / 2$ " NPT	Pg 13.5
	Terminals	1×0.2 to $2 \times 2.5 \mathrm{~mm}^{2}$ (1×24 to 2×14 AWG)	
Weight, lb (kg)		1.65 (0.750)	

Supplementary specifications (not shown under general specifications)

Inherent differential (subtract from PH1/PH2 to get PB1/PB2)	At low setting	17 bar ± 2.5 (246.5 psi ± 36.25)
	At high setting	$42 \mathrm{bar} \pm 9$ (609 psi $\pm 130.5)$
Maximum allowable pressure	Per cycle	375 bar (5437.5 psi)
	Accidental	675 bar (9787.5 psi)
Destruction pressure		1350 bar (19,575 psi)
Operating curves		

1 Maximum differential
2 Minimum differential

Piston

Other versions

For switches with alternative tapped cable entries, consult the Customer Care Center.

-Adjustable value
--- Nonadjustable value

Connection

Terminal model
Contact 2 (stage 2) Contact 1 (stage 1)

Selection and specifications (continued)
 OsiSense XML

 Electromechanical

 Electromechanical pressure and vacuum switches

 pressure and vacuum switches}

Size 500 bar (7250 psi)
Fixed differential, for detection of a single threshold
1 C/O single-pole contact

XMLA pressure switches

Other versions
For switches with alternative tapped cable entries, consult the Customer Care Center.

Selection and
specifications (continued)

OsiSense XML

Electromechanical pressure and vacuum switches

Size 500 bar (7250 psi)
Adjustable differential, for regulation between two thresholds
1 C/O single-pole contact

XMLB pressure switches

Selection and specifications (continued)

OsiSense XML
Electromechanical pressure and vacuum switches

Size 500 bar (7250 psi)
Adjustable differential, for regulation between 2 thresholds
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts

XMLC pressure switches

Selection and
specifications (continued)

OsiSense XML

Electromechanical pressure and vacuum switches

Size 500 bar (7250 psi)
Dual-stage, fixed differential, for detection at each threshold
$2 \mathrm{C} / \mathrm{O}$ single-pole contacts (one per stage)

Selection and specifications (continued)

OsiSense XML

Electromechanical

 pressure and vacuum switchesAccessories

XMLZL001

XMLZL011

XMLZLOO5

XMLZA•••,
XMLZB•••

Electromechanical
pressure and vacuum switches

XML•L35, XML•001, XML•S

Dim.: mm (in.)

${ }^{(1)} 1$ electrical connection entry, tapped M20 x 1.5, Pg 13.5, or 1/4"-18 NTP

XML	$\boldsymbol{\varnothing} \mathbf{a}$	$\mathbf{c 1}$	$\mathbf{c 2}$
BM03	$150(5.91)$	$155.5(6.12)$	$80.5(3.17)$
BL05	$200(7.87)$	$204(8.03)$	$104(4.09)$
\cdot L35, $\boldsymbol{0 0 1}$	$110(4.33)$	-	-
$\cdot \mathbf{S 3 5}, \cdot \mathbf{S 0 2}, \boldsymbol{\bullet} 04$	$110(4.33)$	-	-
$\cdot \mathbf{S 1 0}, \cdot \mathbf{S 2 0}$	$86(3.39)$	-	-

Electromechanical pressure and vacuum switches

XMLAM01, XMLBM05, XMLCM05, XMLA004, XML•010 to 500

${ }^{(1)} 1$ fluid entry, tapped G $1 / 4$ (BSP female)
${ }^{(2)} 1$ electrical connection entry, tapped M20 $1.5, \operatorname{Pg} 13.5$, or $1 / 4$ "-18 NTP

[^16]XML•M02, XML•002, XMLB004, XMLC004, XMLD004

${ }^{(1)} 1$ fluid entry, tapped G $1 / 4$ (BSP female)
\varnothing : 2 elongated holes, $\varnothing 10.2 \times 5.2$
(2) 1 electrical connection entry, tapped M20 $\times 1.5, \mathrm{Pg} 13.5$, or $1 / 4$ "-18 NTP

XMLBL35P, XMLB001P (viscous products)

${ }^{(1)} 1$ fluid entry, tapped G 1-1/4 (BSP female).
${ }^{(2)} 1$ electrical connection entry, tapped $\mathrm{M} 20 \times 1.5$ or Pg 13.5 .
XMLBM05P, XMLA004P, XML•010P, XML•020P, XML•035P (viscous products)

(1) 1 fluid entry, tapped G 1-1/4 (BSP female).
(2) 1 electrical connection entry, tapped $\mathrm{M} 20 \times 1.5$ or Pg 13.5 .

Materials in contact with fluid

OsiSense XML

Electromechanical pressure and vacuum switches

Component Materials in Contact with Fluid								
Pressure or vacuum switch catalog number	Zinc alloy	Stainless steel	Brass	Steel	Nitrile	PTFE	FPM， FKM	Aluminium
XMLAM01V••＊•，XML•M02V••＊•		（1）						
XMLAM01T••＊•，XML•M02T•＊＊＊		（2）						
XMLBM03R••••								
XMLBM03S＊＊＊＊		（3）						
XML•M05A•＊＊•		（1）						
XML•M05B••••		（1）						
XML•M05C••••		（1）						
XMLBM05＊＊＊＊		（1）						
XMLBL05R••••								
XMLBL05S＊＊．•		（3）						
XML•L35R••••，XML•S35R•＊＊＊		（1）						
XML•L35S••••		（3）						
XMLBL35P••••		（1）						
XML•001R••••		（1）						
XML•001S••••		（3）						
XMLB001P＊＊＊		（1）						
XML•002A••••								
XML•002B•••，XML•S02B•••								
XML•002C•＊＊•		（3）						
XMLA004A ${ }^{\circ}$								
XMLA004B••••								
XMLA004C．0．•		（2）						
XMLA004P＊＊••								

Materials in contact with fluid

Materials in contact

 with fluid (continued)
OsiSense XML

Electromechanical pressure and vacuum switches

Component Materials in Contact with Fluid (continued)

Pressure switch catalog number	Zinc alloy	Stainless steel	Brass	Steel	Nitrile	PTFE	FPM, FKM	Aluminium
XMLB004A••••								
XML•004B••*•, XML•S04B••••								
XML•004C...*		(3)						
XML•010A ${ }^{\text {a }}$								
XML-010B•**								
XML-010C•*..		(2)						
XML•010P••••, XML•S10A••••								
XML•020A••*•, XML•035A***								
XML•020B••*•, XML•035B••••								
XML•020C•***, XML•035C***		(2)						
XML•020P•***, XML•035P•**•, XML•S20A**.•								
XML•070D••••, XML•160D••••								
XML•070E***•, XML•160E***		(4)						
XML•070N••*•, XML•160N••*•		(5)						
XML•300D•**								
XML•300E...*		(4)						
XML•300N••0.		(5)						
XML•500D••••								
XML•500E•***								
XML•500N•**4		(5)						

Materials in contact with fluid

Grade of Stainless Steel
${ }^{\text {(1) }} 1.4307$ (AISI 316L)
(2) 1.4404 (AISI 316L)
${ }^{\text {(3) }} 1.4305$ (AISI 303)
${ }^{(4)} 1.4404$ (AISI 316L) +1.4462
${ }^{\text {(5) }} 1.4404$ (AISI 316L) +1.4305 (AISI 303)

9012G and 9016G

Industrial pressure and vacuum switches 9012G pressure switches

Introduction

The 9012G pressure switches are UL Listed and CSA certified as industrial control equipment. They are used to interface pneumatic or hydraulic systems with electrical control systems by opening or closing electrical contacts in response to pressure changes in the system. They have outstanding repeatability and drift performance. Their efficient design uses durable, low mass components for excellent performance under heavy duty vibration and shock conditions

The 9012G pressure switches line offers devices with either diaphragm or piston actuators-for optimum life, versatility, and speed of operation. Features include the following:
■ High shock resistance
■ Dual numerical range scale (psi and kPa)
■ High set-point stability

- Internal or external range adjustment
- No drain line required
- One or two SPDT double-break contacts
- Adjustable or fixed (nonadjustable) differential
■ Single-stage, dual-stage, or differentialpressure operation

A variety of modifications is available (see also page 12):
The 9012G diaphragm switches range from $0.2-675$ psi falling pressure. Nitrile diaphragms and zinc-plated steel flanges are standard. Diaphragms of Viton ${ }^{\circledR}$ fluorocarbon or ethylene propylene are available as well as stainless steel flanges.
The 9012G piston-actuated switches range from 20-9,000 psi falling pressure. They have sealed pistons and can be used on air, water, oil, or any media compatible with the actuator material. The switches come standard with stainless steel pistons and housings, Viton diaphragms and O-ring seals, and Teflon ${ }^{\circledR}$ retaining rings. Ethylene propylene diaphragms and O-ring seals are also available.

The 9012G industrial pressure switches are available as open type or in NEMA 1 enclosures. The backplate is steel with a plastic cover. Open devices in pressure ranges up to 250 psi are available with internal- or external-threaded pressure connectors, ideally suiting them for panel mounting.
The 9012G machine tool pressure switches with NEMA 4, 4X, or 13 (IP66) cast aluminum enclosures are UL Listed and CSA certified as industrial control equipment. They are also UL Marine Listed for use on vessels greater than 65 ft long where ignition protection is not required.
The 9012G machine tool switches are also available in NEMA 7 \& 9 cast aluminum enclosures. These are UL Listed for use in Class I, Divisions 1 and 2, Groups C and D, and Class II, Divisions 1 and 2, Groups E, F, G hazardous locations.

Application and general information

9012 pressure switches can generally be used in any application where electrical contacts must open or close in response to a system pressure change, within the electrical and pressure ratings of the switch. Pressure switches are used in a wide variety of applications such as the following:

\square compressed air systems	stamping presses
\square HVAC equipment	\square automatic grinders
\square chillers	\square welders
\square pumping systems	\square process equipment
\square machine tools	\square molding machines

Pressure switches typically perform one of the following two functions:
Monitoring the pressure in the system. The switch can be used either as an interlock that sequences operations in an automatic system, or to give an audio or visual signal, typically an alarm of an undesired condition, at predetermined pressures. A switch with a fixed differential is generally used in these applications.
Controlling the pressure in the system by starting and stopping a pump or a compressor at predetermined pressures. A switch with an adjustable differential is usually needed in these applications.

Industrial pressure and vacuum switches
9012G pressure switches

Diaphragm life

The elastomer diaphragms used on 9012G switches can withstand high speed cycling and wide pressure changes. They can tolerate operating speeds up to 200 cycles per minute with no negative impact on the life of the diaphragm.
Diaphragm life is affected by pressure medium compatibility. Standard diaphragms on 9012G devices are nitrile in zinc-plated steel flanges. Also available are Viton fluorocarbon and ethylene propylene diaphragms, as well as Type 316 stainless steel flanges.
The diaphragm can withstand wide pressure changes on each operating cycle. However, the pressure applied to the diaphragm during the normal operating cycle should never exceed the maximum value listed in the Range column in the catalog listing. Regularly cycling the pressure above this value reduces life considerably. If significant surges are common, or if pressures are higher than those listed in the Range column, consider using a piston device.

Piston life

For long piston life, the pressure medium should be filtered to keep foreign matter such as dirt and chips out of the piston assembly. 9012G sealed piston devices are not recommended for use on dry gas media, since this usage could cause some leakage past the seal. Depending on the gas, the media pressure, and the rate of operation, the amount of leakage could render the switch inoperable. (Note, however, that some weepage of the media is necessary to lubricate the seals. This small amount of weepage does not indicate a problem.)

Surges

One of the most destructive conditions for a pressure switch is hydraulic surge. A surge is a high rate of rise in pressure, normally of short duration, caused by starting a pump or by opening and closing a valve. Extremely high rates of rise in pressure can be damaging even if they are within the limits of the maximum allowable pressure.
To limit the effect of surges, the switch should be mounted as close to an accumulator and as far from the pump or quick acting valve as possible. The 9012G piston-actuated switches have a 0.020 in. pressure orifice to help reduce the effects of minor surges. 9012G diaphragm-actuated switches have a 0.060 in . pressure orifice. A restrictor with a small orifice placed in the line between the switch and the pump or valve will further help to protect the switch. Using a surge snubber such as the 9049A26 or A26S will also protect the switch.

Vibration

Among other things, excessive vibration can cause contact bounce, chatter, or premature contact transfer, especially when system pressure is near the operating point of the switch. Remote mounting of the switch is the best way to avoid problems.

Use on steam

Switches should not be applied directly on steam exceeding 15 psig. However, with steam capillary tubing installed between the pressure connection and the switch, steam pressure up to 250 psig can be applied—provided this does not exceed the maximum allowable pressure rating of the switch or the maximum temperature rating at the actuator. Refer to the instruction bulletin supplied with the device.

Dual-stage operation

The 9012G dual-stage pressure switches provide two distinct levels of control from one device. These switches are most commonly used where dual functions are required, or in sequencing applications such as alarm-shutdowns.

Differential-pressure operation

The 9012G pressure switches for differential-pressure sensing can monitor changes in the difference between two pressures. These unidirectional devices signal that a predetermined pressure difference was reached, resulting from a widening or narrowing of the difference between two pressures.

9012G and 9016G
 Industrial pressure and vacuum switches 9012G pressure switches

Piston- vs. diaphragm-actuated devices

Whether to select a piston or diaphragm device depends on several criteria:

- maximum allowable pressure
- range and differential
- surges
- medium (whether hydraulic or pneumatic)

Maximum allowable pressures for piston devices are much higher than for diaphragm devices. Most diaphragm devices have a maximum allowable pressure of 850 psi or less, whereas all piston devices have a maximum allowable pressure of 10,000 psi or more.
Range and differential for diaphragm devices are lower than for piston devices. Many applications call for a low differential, such as 20 psi. This may exclude piston devices, which have a minimum differential of 60 psi or more.
Surges are a part of every hydraulic system. While many are small and have only a small effect on the switch, some are significant and can potentially destroy a pressure switch. Diaphragm devices are the most sensitive to surges and are most easily damaged. Piston devices are more tolerant of surges and last longer in the same application.
Hydraulic systems, which typically use oil-based media, are more demanding applications than pneumatic systems. Pressure switches used in hydraulic applications typically experience higher pressures, have wider pressure variations, and produce more surges, since the medium does not compress. Pneumatic systems, which typically use air, place fewer demands on a system, since these applications typically experience lower pressures and the medium can compress, cushioning the effects of surges. Table 1 offers basic guidelines for determining the selection of a piston- versus a diaphragm-operated pressure switch.

Piston vs. diaphragm		
Maximum allowable pressures	High	Piston
	Lower	Diaphragm
Pressures	High pressures	Piston
	Low differentials or pressures	Diaphragm
Surges	Constant	Piston
	Mydral	Diaphragm or piston
	Pneumatic systems	Piston

Operating points (set points)

Pressure switches have two operating points:

- Increasing pressure (rising pressure)
- Decreasing pressure (falling pressure)

These operating points are also called the set points of the switch.

Differential

The differential is the difference in pressure between the rising and falling pressure points. It can be adjustable or fixed.

Range

The range refers to the pressure limits within which the operating points (settings) can be adjusted. The range of the 9012G pressure switch is tied to the decreasing pressure operating point. Adding the differential to the decreasing pressure operating point determines the increasing pressure operating point.

Industrial pressure and vacuum switches 9012G pressure switches

Differential

Fixed differential

To determine the operating range on rising pressure for a fixed differential switch add the differential to the decreasing pressure operating point. For example, to determine the range on increasing pressure for a 9012GDW5 switch:

- Range on decreasing pressure $=3$ to 150 psi

■ Fixed differential $=6.0 \pm 0.8 \mathrm{psi}$
■ Range on increasing pressure $=9 \pm 0.8$ to $156 \pm 0.8 \mathrm{psi}$

Adjustable differential

For adjustable differential switches, add the minimum differential to the low end of the range and the maximum differential to the high end of the range. For example, to determine the range on increasing pressure for a 9012GAW5:
■ Range on decreasing pressure $=3$ to 150 psi
■ Adjustable differential $=6.0$ to 30 psi

- Range on increasing pressure $=9$ to 180

During the normal operating cycle, system pressure should never exceed the upper limit of the range when using a diaphragm-actuated switch. This greatly reduces the life of the diaphragm. For optimum life, operate the switch in the middle 80% of the range.

Maximum allowable pressure

Maximum allowable pressure is the pressure to which a switch can be subjected without causing a change in operating characteristics, shift in settings, or damage to the device.

System pressure surges may occur during machine startup or from valve operation. Surges are not normally detrimental to the life of a switch if the surge is within the maximum allowable pressure rating of the switch. Diaphragm-actuated switches should not be subjected to more than 10 surges per day. More frequent surges greatly reduce the life of the diaphragm.

Industrial pressure and vacuum switches 9012G pressure and 9016G vacuum switches

Specifications

Environment	
Environmental specifications	
Conformity to standards	CE, IEC 60957.5.1, UL 508, CSA 3211-03
Product certifications	UL Listed and CSA certified as industrial control equipment
Protective treatment	Marine use: HT (does not apply to 9016GVG)
Fluids controlled	Air, water, hydraulic oils, gases, steam (depending on the model)
Materials	Cast aluminum enclosures (9012 NEMA 1 and 9016 GVG are stamped metal enclosure and molded cover)
Operating position	Operates in all positions
Shock resistance	50 g
Degree of protection	Depends on the model
Operating rate (operating cycles/minute)	120 operations/minute max. 9016GVG: 60 operations/minute max.
Repeat accuracy	± 0.1 to $\pm 1.0 \%$ (does not apply to 9016GVG)
Drift	$\pm 1.0 \%$ of the adjustable range over 1 million operations
Pressure connection	G1/4 (BSP) female, 1/4"-18 NPTF, or 1/2"-14 NPT
Electrical connection	1/2"-14 NPTF, Pg13.5, or ISO M20 (also, 3/4"-14 NPTF available only on NEMA 7 and 9). NEMA 1 is $1 / 2^{\prime \prime}$ conduit entry, unthreaded.

Contact arrangement

9012G and 9016G machine tool and vacuum switches (except GVG)
Type Contact arrangement Contact symbol

1 N.O., 1 N.C.

Snap switch contains two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity.

Snap switch contains two electrically separated sets of contact elements allowing use on circuits of opposite polarity. Each set contains two double-break contact elements (1 N.O. and 1 N.C.) that must be used on circuits of the same polarity.

Circuit ratings										
	Continuous carrying amperes	AC-50 or $\mathbf{6 0 ~ H z}$						DC		
		$\begin{aligned} & \sum \\ & 0 \\ & \frac{\pi}{\#} \\ & \frac{\pi}{0} \end{aligned}$	Inductive 35\% power factor				Resistive, 75\% power factor	$\begin{aligned} & \sum \\ & 0 \\ & 0 \\ & \pm \\ & \frac{0}{0} \end{aligned}$	Inductive and resistive	
			A	Make	$\begin{gathered} \mathbf{B} \\ \mathbf{A} \end{gathered}$		Make and break amperes		Make and break amperes	eak amperes Double throw
	10	120	60	7200	6	720	6	125	0.55	0.22
SPDT	10	240	30	7200	3	720	3	250	0.27	0.11
PPT	10	480	15	7200	1.5	720	1.5	301-		
	-	600	12	7200	1.2	720	1.2	$600{ }^{(1)}$	0.10	-
	10	120	60	7200	6	720	6	125	0.22	0.22
DPDT	10	240	30	7200	3	720	3	250	0.11	0.11
DPDT	10	480	15	7200	1.5	720	1.5	600	-	-
	-	600	12	7200	1.2	720	1.2	-	-	-

${ }^{(1)}$ Continuous carrying ampere rating does not apply.
Acceptable wire sizes: 12-22 AWG. Recommended terminal clamp torque: 7 lb -in
Not recommended for use on circuits below $24 \mathrm{~V}, 20 \mathrm{~mA}$.

Electrical Ratings-9016GVG			
	Single Phase	Polyphase	DC
110 V	2 hp	3 hp	1 hp
220 V	3 hp	5 hp	1 hp
$440-550 \mathrm{~V}$	5 hp	5 hp	-
32 V	-	-	0.5 hp

[^17]Technical overview
(continued)

9012G and 9016G

Industrial pressure and vacuum switches 9012G pressure switches

The 9012G single-stage pressure switches are control-circuit rated devices. These switches are used in pneumatic or hydraulic systems on a wide variety of machine and process applications to protect the equipment. They either control or monitor the system pressure.

Industrial pressure and vacuum switches 9012G machine tool pressure switches

Selection and specifications9012G pressure switches

9012GDW1

Single-Stage Operation

Class 9012 single-stage pressure switches are control circuit rated devices used in pneumatic or hydraulic systems on a wide variety of machine and process applications to protect the equipment and control or monitor the system pressure.

- Type G machine tool switches are available with NEMA 4, 4X, and 13 (IEC IP66) enclosure ratings.
- The NEMA 7 and 9 devices are UL listed for use in the following hazardous locations: Class I, Divisions 1 and 2, Groups C and D; and Class II, Divisions 1 and 2, Groups E, F, and G.
- NEMA 4, 4X, and 13 devices are suitable for use in Class I, Division 2, Groups A, B, C, and D hazardous locations or nonhazardous locations only.
- Enclosure materials are cast aluminum.
- To ensure repeatability and minimize setting drift, pressure settings should fall within the middle 80 percent of the pressure range.

Fixed differential NEMA 4, 4X, 13 Enclosure

UL Listed and CSA Certified as Industrial Control Equipment

Range on decreasing pressure psig	Approximate differential at mid-range, psig	Maximum allowable pressure, psig	SPDT	Class 9012 Type
DPDT				

Diaphragm actuated-Nitrile diaphragm, zinc plated steel housing

$0.2-10$	0.6 ± 0.1	100	GDW1	GDW21
$1-40$	1.6 ± 0.4	100	GDW2	GDW22
$1.5-75$	3.0 ± 0.5	240	GDW4	GDW24
$3-150$	6.0 ± 0.8	475	GDW5	GDW25
$5-250$	10.0 ± 1.5	750	GDW6	GDW26
$13-425$	16 ± 3.5	850	GEW1	GEW21
$20-675$	27 ± 5	2000	GEW2	GEW22

Piston actuated-\#440 stainless steel piston
\#303 stainless steel housing, Viton ${ }^{\circledR}$ fluorocarbon diaphragm and O-ring, Teflon ${ }^{\circledR}$ retaining ring

$20-1000$	59 ± 9	10,000	GFW1	GFW21
$90-2900$	170 ± 15	15,000	GFW2	GFW22
$170-5600$	289 ± 55	20,000	GFW3	GFW23
$270-9000$	495 ± 70	25,000	GFW4	GFW24

Specifications			
Fluids controlled	Air, water, hydraulic oils, gases, steam (depending on the model)		
Pressure connection	$1 / 4 "-18$ NPTF is standard. For metric threads, add M after the W on all types. (2) Other options are available (see page 8/91).		
Weight (approximate)	$3 \mathrm{lb}(1.36 \mathrm{~kg}$)		
Voltage limits	600 V		
Continuous current	10A		
Electrical connections	1/2"-14 NPTF (standard), For Pg 13.5, or ISO M20, see footnote (2).		
Standards/Ratings	CE, IEC 60957.5.1, UL 508, CSA 3211-03. UL Marine Listed for use on ships/vessels greater than 65 ft long where ignition protection is not required.		
Temperature ratings	Minimum	Maximum	
Ambient	$-23^{\circ} \mathrm{C}\left(-10^{\circ} \mathrm{F}\right)$	$+85^{\circ} \mathrm{C}\left(+185^{\circ} \mathrm{F}\right)$	
Diaphragm	$-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$	$+120^{\circ} \mathrm{C}\left(+250^{\circ} \mathrm{F}\right)$	
Piston	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$		
All with Form Q4	Contact blocks		
Operating curves		Connection	
		Form H17	
		Form H10	Form H11

SPDT snap switches contain two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity. DPDT snap switches contain two electrically separated sets of contact elements allowing use on circuits of opposite polarity. Each set contains two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity.

[^18]Selection and
specifications (continued)

9012G and 9016G

Industrial pressure and vacuum switches 9012G machine tool pressure switches

9012GDR

Fixed Differential
NEMA 7 \& 9 Enclosure, Class I \& II, Division 1 \& 2, Groups C, D, E, F, G
UL Listed as Industrial Control Equipment

Range on Decreasing Pressure psig	Approximate Differential at Mid Range psig ${ }^{(1)}$	Maximum Allowable Pressure, psig	Class 9012 Type	
Diaphragm Actuated-Nitrile Diaphragm, Zinc Plated Steel Housing	SPDT	DPDT		
$0.2-10$	1.0 ± 0.1	100	GDR1	GDR21
$1-40$	2.4 ± 0.8	100	GDR2	GDR22
$1.5-75$	4.5 ± 1	240	GDR4	GDR24
$3-150$	9 ± 1.5	475	GDR5	GDR25
$5-250$	15 ± 3	750	GDR6	GDR26
$13-425$	25 ± 7	850	GER1	GER21
$20-675$	41 ± 10	2000	GER2	GER22

Piston Actuated-\#440 Stainless Steel Piston.
\#303 Stainless Steel Housing, Viton ${ }^{\circledR}$ Fluorocarbon Diaphragm and O-ring, Teflon ${ }^{\circledR}$ Retaining Ring

$20-1000$	89 ± 18	10,000	GFR1	GFR21
$90-2900$	255 ± 30	15,000	GFR2	GFR22
$170-5600$	578 ± 110	20,000	GFR3	GFR23
$270-9000$	788 ± 140	25,000	GFR4	GFR24
Specifications				

Fluids Controlled	Air, water, hydraulic oils, gases, steam (depending on the model)
Pressure Connection	$1 / 4 "-18 \mathrm{NPTF}$ (standard) or $1 / 2^{"-14 ~ N P T . ~ S e e ~ p a g e ~ 8 / 91 . ~}$
Weight (approximate)	$10 \mathrm{lb}(4.54 \mathrm{~kg})$
Voltage Limits	600 V
Continuous Current	10 A
Electrical Connections	$1 / 2^{2-14 ~ N P T F, ~ 3 / 4 "-14 ~ N P T F ~}$
Standards/Ratings	CE, IEC 60957.5.1, UL 508, CSA 3211-03. UL Marine Listed for use on vessels greater than 65 ft long where ignition protection is required.

Temperature Ratings		Minimum	
Ambient		$-23^{\circ} \mathrm{C}\left(-10^{\circ} \mathrm{F}\right)$	
Media	Diaphragm	$-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$	
	Piston	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$	
	All with Form Q4	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$	
Operating Curves		Contact Blocks	
	Fixed Max. Differential Min. Differential		

SPDT snap switches contain two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity. DPDT snap switches contain two electrically separated sets of contact elements allowing use on circuits of opposite polarity. Each set contains two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity.

Maximum

Acceptable Wire Sizes: 12-22 AWG
$+85^{\circ} \mathrm{C}\left(+185^{\circ} \mathrm{F}\right)$
$+120^{\circ} \mathrm{C}\left(+250^{\circ} \mathrm{F}\right)$

Recommended Terminal Clamp Torque
${ }^{(1)}$ The differential adds to the range setting and determines the operating point on rising pressure.

NOTE: When pressure settings of the switches must be factory set (Form Y1), and only one setting is identified, specify whether this setting is on increasing or decreasing pressure

File E12443	CCN NOWT	Haz. Loc., G•R
File E12158	CCN NKPZ	G•W, G•O, G•G
File E12158	CCN NTHT	Marine Use, G•W

File LR 25490 Class 3211-03 G•W, G•O, G•G File LR 26817 Class 3218-02 G•R

9012G and 9016G

Industrial pressure and vacuum switches

 9012G machine tool pressure switches

9012GAW1

Range on Decreasing Pressure, psig	Adjustable Differential ${ }^{(1)}$ Approximate at Mid Range	Maximum Allowable Pressure, psig	Class 9012 Type	
			SPDT	DPDT
Diaphragm Actuated-Nitrile Diaphragm, Zinc Plated Steel Housing				
0.2-10	0.7-2	100	GAW1	GAW21
1-40	2.4-8	100	GAW2	GAW22
1.5-75	3.9-15	240	GAW4	GAW24
3-150	6.6-30	475	GAW5	GAW25
5-250	11-49	750	GAW6	GAW26
13-425	20-82	850	GBW1	GBW21
20-675	35-130	2000	GBW2	GBW22
Piston Actuated-\#440 Stainless Steel Piston. \#303 Stainless Steel Housing, Viton ${ }^{\circledR}$ Fluorocarbon Diaphragm and O-ring, Teflon ${ }^{\circledR}$ Retaining Ring				
20-1000	65-200	10,000	GCW1	GCW21
90-2900	187-560	15,000	GCW2	GCW22
170-5600	425-1050	20,000	GCW3	GCW23
270-9000	580-1500	25,000	GCW4	GCW24
Specifications				
Fluids Controlled	Air, water, hydraulic oils, gases, steam (depending on the model)			
Pressure Connection	$1 / 4^{\prime \prime}-18$ NPTF is standard. For metric threads (G1/4 BSP female pressure connection and M20 electrical connection), add M after the W in the catalog number. For additional pressure connections, see page $8 / 91$. ${ }^{(1)}$			
Weight (approximate)	$3 \mathrm{lb}(1.36 \mathrm{~kg}$)			
Voltage Limits	600 V			
Continuous Current	10 A			
Electrical Connections	$1 / 2$ "-14 NPTF is standard. For metric threads (G1/4 BSP female pressure connection and M20 electrical connection), add M after the W in the catalog number. ${ }^{(2)}$.			
Standards/Ratings	CE, IEC 60957.5.1, UL 508, CSA 3211-03. UL Marine Listed for use on ships/vessels greater than 65 ft long where ignition protection is not required.			
Temperature Ratings	Minimum	Maximum		
Ambient	$-23^{\circ} \mathrm{C}\left(-10^{\circ} \mathrm{F}\right)$	$+85^{\circ} \mathrm{C}\left(+185^{\circ} \mathrm{F}\right)$		
Media $\begin{aligned} & \text { Diaphragm } \\ & \end{aligned}$	$-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$	$+120^{\circ} \mathrm{C}\left(+250{ }^{\circ} \mathrm{F}\right)$		
	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$			
	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$			
Operating Curves	Contact Blocks	Connection		
		Form H10	Form H11	
SPDT snap switches contain two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity. DPDT snap switches contain two electrically separated sets of contact elements allowing use on circuits of opposite polarity. Each set contains two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity.				
Acceptable Wire Sizes:	12-22 AWG	Recommended Terminal Clamp Torque: 7 lb -in		

${ }^{(1)}$ The differential adds to the range setting and determines the operating point on rising pressure
${ }^{(2)}$ To order a Pg13.5 electrical conduit entry and a 1/4"-19 BSP pressure connection, add M12 to the end of the catalog number, as well as adding "M" after " W " for metric threads. For example:
9012GAW1 = 1/2" NPT electrical conduit entry
$9012 \mathrm{GAWM} 1=20 \times 1.5 \mathrm{~mm}$ electrical conduit entry and $1 / 4^{\prime \prime}-19$ BSP pressure connection
$9012 \mathrm{GAWM} 1 \mathrm{M} 12=\mathrm{Pg} 13.5$ electrical conduit entry and $1 / 4^{4}-19 \mathrm{BSP}$ pressure connection

Selection and
specifications (continued)

9012G and 9016G

Industrial pressure and vacuum switches 9012G machine tool pressure switches

9012GAR

Adjustable Differential NEMA 7 \& 9 Enclosure, Class I \& II, Division 1 \& 2, Groups C, D, E, F, G UL Listed as Industrial Control Equipment				
Range on Decreasing Pressure, psig	Adjustable Differential ${ }^{(1)}$ Approximate at Mid Range	Maximum Allowable Pressure, psig	Class 9012 Type	
Diaphragm Actuated-Nitrile Diaphragm, Zinc Plated Steel Housing				
0.2-10	1.0-2	100	GAR1	GAR21
1-40	4-8	100	GAR2	GAR22
1.5-75	8-15	240	GAR4	GAR24
3-150	16-30	475	GAR5	GAR25
5-250	23-49	750	GAR6	GAR26
13-425	36-82	850	GBR1	GBR21
20-675	65-130	2000	GBR2	GBR22

Piston Actuated-\#440 Stainless Steel Piston.
\#303 Stainless Steel Housing, Viton ${ }^{\circledR}$ Fluorocarbon Diaphragm and O-ring, Teflon ${ }^{\circledR}$ Retaining Ring

20-1000	98-200	10,000	GCR1	GCR21
90-2900	281-560	15,000	GCR2	GCR22
170-5600	638-1050	20,000	GCR3	GCR23
270-9000	870-1500	25,000	GCR4	GCR24
Specifications				
Fluids Controlled	Air, water, hydraulic oils, gases, steam (depending on the model)			
Pressure Connection	$1 / 4 "-18$ NPTF (standard) or 1/2"-14 NPT. See page 8/91.			
Weight (approximate)	$10 \mathrm{lb}(4.54 \mathrm{~kg})$			
Voltage Limits	600 V			
Continuous Current	10 A			
Electrical Connections	1/2"-14 NPTF, 3/4"-14 NPTF			
Standards/Ratings	CE, IEC 60957.5.1, UL 508, CSA 3211-03. UL Marine Listed for use on vessels longer than 65 ft where ignition protection is required.			
Temperature Ratings	Minimum Maximum	Maximum		
Ambient	$-23^{\circ} \mathrm{C}\left(-10^{\circ} \mathrm{F}\right)$	$+85^{\circ} \mathrm{C}\left(+185^{\circ} \mathrm{F}\right)$		
Media $\frac{\text { Diaphragm }}{\text { Piston }}$	$-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$	$+120^{\circ} \mathrm{C}\left(+250{ }^{\circ} \mathrm{F}\right)$		
	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$			
	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$			
Operating Curves	Contact Blocks	Connection		
		Form H10	Form H11	

SPDT snap switches contain two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity. DPDT snap switches contain two electrically separated sets of contact elements allowing use on circuits of opposite polarity. Each set contains two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity.
Acceptable Wire Sizes: 12-22 AWG Recommended Terminal Clamp Torque: $7 \mathrm{lb}-\mathrm{in}$
${ }^{(1)}$ The differential adds to the range setting and determines the operating point on rising pressure.

File E12443 CCN NOWT Haz. Loc., G•R File E12158 CCN NKPZ G•W, G•O, G•G File E12158 CCN NTHT Marine Use, G•W

C
File LR 25490 Class 3211-03 G•W, G•O, G•G File LR 26817 Class 3218-02 G•R

9012G and 9016G

Industrial pressure and vacuum switches
 9012G pressure switches for differential-pressure operation

9012GJW1

Differential-Pressure Operation

Pressure switches for differential-pressure operation are used to monitor the change in the difference between two pressures. The 9012G differential-pressure switches are unidirectional devices and are used in applications to signal that a predetermined pressure difference has been reached as a result of a widening or increasing difference between the two pressures. They can also be used in applications to signal that a predetermined pressure difference has been reached as a result of a narrowing or decreasing difference between the two pressures.
NEMA 4, 4X, and 13 devices are suitable for use in Class I, Division 2, Groups A, B, C, and D hazardous locations or nonhazardous locations only.

Adjustable differential NEMA 4, 4X, 13 Enclosures UL Listed and CSA Certified as Industrial Control Equipment					
Working Pressure Range on decreasing X (upper) actuator	Adjustable Difference on Decreasing Pressure (Adds to working pressure) Y (lower) actuator	Adjustable Differential Actuates on increasing pressure (adds to adjustable difference)	Maximum Allowable Pressure	Class SPDT	Type DPDT
Diaphragm Actuated-Nitrile Diaphragm, Zinc Plated Steel Housing					
0-75	0.25-10	1-2	100	GGW1	GGW21
0-175	0.5-36	5.6-15	240	GGW4	GGW24
0-500	3-175	26-90	850	GHW1	GHW21

Piston Actuated-\#440 Stainless Steel Piston.
\#303 Stainless Steel Housing, Viton ${ }^{\circledR}$ Fluorocarbon Diaphragm and O-ring, Teflon ${ }^{\circledR}$ Retaining Ring

File E12158 CCN NKPZ
File E12158 CCN NTHT - Marine Use

Selection and
specifications (continued)

9012G and 9016G

Industrial pressure and vacuum switches
 9012G dual-stage pressure switches

9012GKW1

Dual-Stage Operation

The 9012G dual-stage pressure switches are designed for use in applications where two separate pressure operations must be controlled by a single pressure monitoring device. These controls are most commonly used where dual functions are required or in sequencing applications such as alarm shutdowns. The spread between the two stages is adjustable, but the differential between the high (rising) and low (falling) operating points of each stage is fixed.
NEMA 4, 4X, and 13 devices are suitable for use in Class I, Division 2, Groups A, B, C, and D hazardous locations or nonhazardous locations only.

Fixed Differential

NEMA 4, 4X, 13 Enclosure
UL Listed and CSA Certified as Industrial Control Equipment

| $\begin{array}{c}\text { Range Setting } \\ \text { Pressure limits between } \\ \text { which Stage 1 can be } \\ \text { adjusted to operate on } \\ \text { decreasing pressure }\end{array}$ | $\begin{array}{c}\text { Adjustable Spread } \\ \text { Add to the range setting } \\ \text { to obtain the decreasing } \\ \text { operating point of Stage 2 }\end{array}$ | $\begin{array}{c}\text { Fixed Differential } \\ \text { Add to the low operating point to } \\ \text { obtain the approximate high } \\ \text { operating point for each stage } \\ \text { Stage 1 } \\ \text { Stage 2 }\end{array}$ | | $\begin{array}{c}\text { Maximum }\end{array}$ | $\begin{array}{c}\text { Mllowable } \\ \text { Pressure }\end{array}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}SPDT Each

Stage\end{array}\right]\)| Type |
| :---: |

Piston Actuated-\#440 Stainless Steel Piston.
\#303 Stainless Steel Housing, Viton ${ }^{\circledR}$ Fluorocarbon Diaphragm and O-ring, Teflon ${ }^{\circledR}$ Retaining Ring

$20-1000$	$72-300$	50 ± 10	75 ± 19	10,000	GMW1
$90-2900$	$176-800$	140 ± 30	210 ± 52	15,000	GMW2
$170-5600$	$360-1700$	275 ± 60	400 ± 100	20,000	GMW3
$270-9000$	$550-2500$	400 ± 80	800 ± 150	25,000	GMW4
Specifications					

Specifications

Fluids Controlled	Air, water, hydraulic oils, gases, steam (depending on the model)
Pressure Connection	$1 / 4^{\prime \prime}-18$ NPTF is standard. For metric threads, add M after the W on all types. Other options are available (see page 8/91). (1)

Weight (approximate)	$3 \mathrm{lb}(1.36 \mathrm{~kg})$
Voltage Limits	600 V
Continuous Current	10 A
Electrical Connections	$1 / 2^{\prime \prime}-14$ NPTF (standard), For Pg 13.5, or ISO M20, see footnote (2) on page 8/87 .
Standards/Ratings	CE, IEC 60957.5.1, UL 508, CSA 3211-03. UL Marine Listed for use on vessels greater than 65 ft long where ignition protection is not required.

Temperature Ratings		g where ign	ed.
		Minimum	Maximum
Ambient		$-23^{\circ} \mathrm{C}\left(-10^{\circ} \mathrm{F}\right)$	$+85^{\circ} \mathrm{C}\left(+185{ }^{\circ} \mathrm{F}\right)$
Media	Diaphragm	$-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$	$+120^{\circ} \mathrm{C}\left(+250^{\circ} \mathrm{F}\right)$
	Piston	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$	
	All with Form Q4	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$	

Operating Curves

Acceptable Wire Sizes:
12-22 AWG
Recommended Terminal Clamp Torque:
$7 \mathrm{lb}-\mathrm{in}$

Wiring Diagrams for Receptacles and Connectors—Factory Modifications (Forms)—see page 8/91.

Prewired 5-pin male receptacle

Form H10

Form H11

Micro connector, 4-pin, for 24 Vdc pilot light

Form H17

Industrial pressure and vacuum switches

 9012G machine tool modifications and renewal partsModifications, Renewal Parts, and Accessories
9012G Machine Tool Factory Modifications (Forms)

| Modification | Applies to | Form |
| :--- | :--- | :---: | :---: |
| Lock on rising pressure, manual reset only | Available on GDW, GDWM, GEW, GEWM, GFW, GFWM only | |

9012G Pressure Switches, Factory Modifications (Forms) for Renewal Parts Kits, Class 9998
For suffixes for renewal parts kits, see the table below.

Modification		Applies to Parts Kit Type	Form
SPDT snap switch rated 1.1 A at 125 Vdc (minimum differential doubles)		PC313	H3
\#316 stainless steel flange	Standard nitrile diaphragm	PC177-179, PC268, 269	Q1
		PC265-267	
	Ethylene propylene diaphragm	PC177-178, PC268, 269	Q3
		PC266, 267	
	Viton ${ }^{\text {® fluorocarbon diaphragm }}$	PC177-178, PC268, 269	Q4
		PC265-267	
Pressure connection	1/4"-18 NPT external thread	PC265-269	Z
	1/2"-14 NPT external thread, 1/4"-18 NPTF internal thread	PC265-269	Z16
	7/16"-20 UNF-2B internal thread	PC177, 178, PC265-273	Z18
Renewal Parts Kits, Class 9998, for Class 9012 and 9016 Devices			
Description	Equipment To Be Serviced		Parts Kit Type
Actuator assembly	9012GA, GD, GG, GK, GN, GR 5, 25, 55 Series C only		PC268 (1)
	9012GA, GD, GG, GK, GN, GR 6, 26, 36, 46, 56 Series C only		PC269 (1)
	9012GB, GE, GH1, 21, 31, 41, 51; GL, GP, GS1		PC177 (1)
	9012GB, GE, GH2, 22, 32, 42, 52; GL, GP, GS2		PC178 (1)
Diaphragm assembly	9012GA, GD, GN, GR1, 21 Series C only		PC265 (1)
	9012GA, GD, GG, GK, GN, GR 2, 3, 22, 52 Series C only		PC266 (1)
	9012GA, GD, GG, GK, GN, GR4, 24, 54 Series C only		PC267 (1)
	9016 GAW-1, 21		PC233
Gasket kit	Contains all replaceable gaskets for all 9012 Open, NEMA 1, 4, 4X, 13		PC184
Pilot light	9012, 9016G Forms G7, G8, G9, G10, G21, G22; 24 Volts DC		PC305
Piston assembly	9012GC, GF, GJ, GQ, GT1, 21, 31, 41, 51 Series C only		PC270 (1)
	9012GC, GF, GJ, GQ, GT2, 22, 32, 42, 52 Series C only		PC271 (1)
	9012GC, GF, GQ, GT4, 24, 34, 44, 54 Series C only		PC273 (1)
Snap switch	SPDT, for 9012GA, GB, GC, GD, GE, GF, GG, GH, GJ Single Pole; Except Forms E2, E3, E4, H3: Series C only		PC313 (1)
	DPDT, 9012GA, GB, GC, GD, GE, GF, GG, GH, GJ Double Pole; Except Forms E2, E3, H6, H7: Series C only		PC314 (1)

(1) If one of these Form designations appears on the pressure switch nameplate, the 9998 PC number must be completed by adding that same Form suffix from the table above, and the Form price added to the kit price

Accessories

Class 9049 Accessories for 9012G Pressure Switches	
Description Stainless steel surge reducer for use on oils, coolants, and hydraulic fluids (not recommended for air or water)	Type

Selection and specifications (continued)

9012G and 9016G

Industrial pressure and vacuum switches
 9012G industrial pressure switches

9012GRG5

Fixed Differential Open Type or NEMA 1 Enclosure UL Listed and CSA Certified as Industrial Control Equipment				
Range on Decreasing Pressure, psig	Approximate Differential ${ }^{(1)}$ At Mid Range, psig	Maximum Allowable Pressure, psig	Class Open Type	2 Type NEMA 1
Diaphragm Actuated-Nitrile Diaphragm, Zinc Plated Steel Housing				
0.2-10	0.4 ± 0.1	100	GRO1	GRG1
1-40	1.2 ± 0.3	100	GRO3	GRG3
1.5-75	2.2 ± 0.4	240	GRO4	GRG4
3-150	4.2 ± 1	475	GRO5	GRG5
5-250	7.4 ± 2	750	GRO6	GRG6
13-425	13 ± 3	850	GSO1	GSG1
20-675	19 ± 5	2000	GSO2	GSG2

Piston Actuated-\#440 Stainless Steel Piston.
\#303 Stainless Steel Housing, Viton ${ }^{\circledR}$ Fluorocarbon Diaphragm and O-Ring, Teflon ${ }^{\circledR}$ Retaining Ring

20-1000	49 ± 10	10,000	GTO1	GTG1
90-2900	141 ± 15	15,000	GTO2	GTG2
170-5600	200 ± 40	20,000	GTO3	GTG3
270-9000	350 ± 45	25,000	GTO4	GTG4
Specifications				
Fluids Controlled	Air, water, hydraulic oils, gases, steam (depending on the model)			
Pressure Connection	1/4"-18 NPTF (standard), 1/2"-14 NPT, or 7/16"-20 UNF-2B. See Forms table on page 8/93.			
Weight (approximate)	Type 1: $2 \mathrm{lb}(0.91 \mathrm{~kg}$); Open: $1.7 \mathrm{lb}(0.77)$			
Voltage Limits	600 V			
Continuous Current	10A			
Electrical Connections	1/2" conduit entry, unthreaded			
Standards/Ratings	CE, IEC 60957.5.1, UL 508, CSA 3211-03			
Temperature Ratings	Minimum	Maximum		
Ambient	$-23^{\circ} \mathrm{C}\left(-10^{\circ} \mathrm{F}\right)$	$+85^{\circ} \mathrm{C}\left(+185{ }^{\circ} \mathrm{F}\right)$		
Diaphragm	$-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$	$+120^{\circ} \mathrm{C}\left(+250{ }^{\circ} \mathrm{F}\right)$		
Media Piston	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$			
All with Form Q4	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$			
Operating Curves	Contact Blocks			
$\stackrel{\text { © }}{\stackrel{0}{5}} \quad$ Max. Differential		Acceptable Wire Sizes: 12-22 AWG		
		Recommended Terminal Clamp Torque: $7 \mathrm{lb}-\mathrm{in}$		

${ }^{(1)}$ Determines the operating point on rising pressure.

File E12158 CCN NKPZ

File LR 25490
Class 3211-03

9012G and 9016G

Industrial pressure and vacuum switches 9012G industrial pressure switches

9012GNO5

9012GQO2

9012GNG1

Adjustable Differential
Open Type or NEMA 1 Enclosure
UL Listed and CSA Certified as Industrial Control Equipment

Range on Decreasing Pressure psig	Approximate Mid Range ${ }^{(1)}$ Differential (adds to the decreasing set point)	Maximum Allowable Pressure psig	Class 9012 Type Open Type		NEMA 1
Diaphragm Actuated-Nitrile Diaphragm, Zinc Plated Steel Housing					
$0.2-10$	$0.6-1.0$	100	GNO1	GNG1	
$1-40$	$1.6-5.0$	100	GNO3	GNG3	
$1.5-75$	$2.5-6.5$	240	GNO4	GNG4	
$3-150$	$4.8-13$	475	GNO5	GNG5	
$5-250$	$8.5-20.5$	750	GNO6	GNG6	
$13-425$	$20-41$	850	GPO1	GPG1	
$20-675$	$35-66$	2000	GPO2	GPG2	

Piston Actuated-\#440 Stainless Steel Piston.
\#303 Stainless Steel Housing, Viton ${ }^{\circledR}$ Fluorocarbon Diaphragm and O-Ring, Teflon ${ }^{\circledR}$ Retaining Ring

20-1000	56-98	10,000	GQ01	GQG1
90-2900	162-308	15,000	GQO2	GQG2
170-5600	355-563	20,000	GQO3	GQG3
270-9000	481-1050	25,000	GQO4	GQG4
Specifications				
Fluids Controlled	Air, water, hydraulic oils, gases, steam (depending on the model)			
Pressure Connection	1/4"-18 NPTF (standard), G1/4 (BSP) female, or 1/2"-14 NPT. See Forms in the table below.			
Weight (approximate)	Type 1: $2 \mathrm{lb}(0.91 \mathrm{~kg})$; Open: $1.7 \mathrm{lb}(0.77)$			
Voltage Limits	600 V			
Continuous Current	10 A			
Electrical Connections	1/2" conduit entry, unthreaded			
Standards/Ratings	CE, IEC 60957.5.1, UL 508, CSA 3211-03			
Temperature Ratings	Minimum	Maximum		
Ambient	$-23^{\circ} \mathrm{C}\left(-10^{\circ} \mathrm{F}\right)$	$+85^{\circ} \mathrm{C}\left(+185{ }^{\circ} \mathrm{F}\right)$		
	$-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$	$+120^{\circ} \mathrm{C}\left(+250{ }^{\circ} \mathrm{F}\right)$		
	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$			
All with Form Q4	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$			
Operating Curves	Contact Blocks			
	SPDT Form C contacts	Acceptable Wire Sizes:12-22 AWG		
		Recommended Terminal Clamp Torque:$7 \mathrm{lb}-\mathrm{in}$		

Factory Modifications (Forms) for 9012G Pressure Switches, Open Type or NEMA 1
UL Listed and CSA Certified as Industrial Control Equipment

Modification		Applies to	Form
Diaphragm	Standard Nitrile in \#316 stainless steel housing	GNG, GNO, GPG, GPO, GRG, GRO, GSG, GSO	Q1
	Ethylene propylene in \#316 stainless steel housing	Not available on GNG, GNO, GRG, GRO1. Available on all other GNG, GNO, GPG, GPO, GRG, GRO, GSG, GSO	Q3
	Viton ${ }^{\circledR}$ fluorocarbon in \#316 stainless steel housing	GNG, GNO, GPG, GPO, GRG, GRO, GSG, GSO	Q4
Pressure connection	1/4"-18 NPT external thread	GNG, GNO, GRG, GRO	Z
	1/2"-14 NPT external thread, 1/4"-18 NPTF internal thread. Standard actuator only.	GNG, GNO, GRG, GRO	Z16
	7/16"-20 UNF-2B internal thread	GNG, GNO, GPG, GPO, GQG, GQO, GRG, GRO, GSG, GSO, GTG, GTO	Z18

Selection and specifications (continued)

9012G and 9016G

Industrial pressure and vacuum switches
 9016G vacuum switches
 Control applications

Selection and
Specifications9016G Vacuum Switches

9016GAW2

9016GAR1

9016GAW Switches for Sensitive Control Applications

9016GAW vacuum switches have double throw contacts. Normally open and normally closed circuits allow the use of these controls for standard or reverse action applications.

Standard controls can be mounted from the front using the bracket provided. Two mounting screws are required for firm attachment to any smooth, flat surface. Allowance must be made for flange projection.
Controls with the Form F modification include two mounting feet with $9 / 32$ " mounting holes on $3-3 / 4$ in. centers. The Range and Differential adjustments are accessed by removing the front cover.

- Maximum allowable positive pressure: 100 psig.
- Diaphragms are oil resisting, nitrile butadiene rubber (Buna-N).
- For electrical ratings and temperature limitations, see table on page 8/83.
- For dimensions and modifications, see page 99.

9016GAW Vacuum Switch for Control Applications, Diaphragm Actuated						
Range on Decreasing Vacuum (inHg)	Adjustable Differential (inHg) Adds to Range (1)		Contact Arrangement	Pipe Tap (NPTF)	Class 9016 Type NEMA Enclosure Type	
0-28.7	0.8-9	1.3-7.4	1 N.O.-1 N.C.	1/4"-18	GAW1	GAR1
0-25	5-20	5-20	1 N.O.-1 N.C.	1/4"-18	GAW2	N/A
0-28.3	1-9	1.7-7.4	2 N.O.-2 N.C.	1/4"-18	GAW21	GAR21
0-25	5-20	5-20	2 N.O.-2 N.C.	1/4"-18	GAW22	N/A
Specifications						
Fluids Controlled	Air, water, hydraulic oils, gases, steam (depending on the model)					
Pressure Connection	NEMA 4, 4X \& 13: 1/4"-18 NPTF (standard), G1/4 (BSP) female, or 1/2"-14 NPT. See Forms table on page 99. NEMA 7 \& $9: 1 / 4$ " NPTF					
Weight (approximate)	Type 4, 4X, and 13: 3 lb (1.36 kg); Type 7 \& 9: $10 \mathrm{lb}(4.54 \mathrm{~kg}$)					
Voltage Limits	600 V					
Continuous Current	10 A					
Electrical Connections	NEMA 4, 4X \& 13: 1/2"-14 NPTF NEMA 7 \& 9: 3/4"-14 NPTF					
Standards/Ratings	CE, IEC 60957.5.1, UL 508, CSA 3211-03					
Temperature Ratings	Minimum		Maximum			
Ambient	$-23^{\circ} \mathrm{C}\left(-10^{\circ} \mathrm{F}\right)$		$+85^{\circ} \mathrm{C}\left(+185{ }^{\circ} \mathrm{F}\right)$			
Media $\frac{\text { Diaphragm }}{\text { Piston }}$	$-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$		$+120^{\circ} \mathrm{C}\left(+250{ }^{\circ} \mathrm{F}\right)$			
Media Piston	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$					
All with Form Q4	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$					
Operating Curves	Contact Blocks		Connection			
	1 N.O., 1 N.C.		Form H17			
			Form H 10		Form H11	
SPDT snap switches contain two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity. DPDT snap switches contain two electrically separated sets of contact elements allowing use on circuits of opposite polarity. Each set contains two double-break contact elements (1 N.O., 1 N.C.) that must be used on circuits of the same polarity.						
Acceptable Wire Sizes:	12-22 AWG		Recommended Terminal Clamp Torque: $7 \mathrm{lb}-\mathrm{in}$			

(1) Add the Differential to the Range to obtain the operating point on increasing vacuum (within vacuum limitations). The differential increases linearly over the range. The minimum differential doubles with NEMA 7 \& 9 enclosures.

File E12443 Haz Loc CCN NOWT (GAR) File E12158 File E12158

CCN NKPZ (GAW)
CCN NTHT
Marine Use (GAW)

File LR 25490 File LR26817
Class 321106 Type GAR only Type GAW only (NEMA 7 and 9 Haz. Loc.)

C ϵ

9012G and 9016G

Industrial pressure and vacuum switches
9016 G vacuum switches
Power applications

9016GVG1J10

9016GVG Power Switches

The 9016 GVG 1 is designed as a companion to the 9036 GG float switches in common use on vacuum heating pumps. Electrical ratings of float and vacuum switch types are equal.
For dimensions and modifications, see page 98.

9016GVG Vacuum Switch for Power Applications NEMA 1 Enclosure
 Contacts Open on Increasing Vacuum

CutOut Range, inHg	Approximate Adjustable Differential, inHg	Cut-In Range, inHg	Poles	Pressure Connection	Vacuum Setting, inHg	NEMA 1 Enclosure Class 9016 Type
5-25	$5-10 \mathrm{inHg}$	0-20	2	1/4"-18 NPSF	3-8	GVG1J09
					16.5-25	GVG1J10
					17-22	GVG1J11
					18-23	GVG1J12
					20-25	GVG1J13
					Specify other vacuum (minimum order quantity: 4 pieces)	GVG1J99
Specifications						
Fluids Controlled		Air, water, hydraulic oils, gases, steam (depending on the model)				
Pressure Connection		1/4"-18 NPTF (standard), G1/4 (BSP) female, or 1/2"-14 NPT. See Forms table, page 99.				
Max. Allowable Positive Pressure		100 psig				
Weight (approximate)		$2 \mathrm{lb}(0.91)$				
Voltage Limits		600 V				
Continuous Current		10 A				
Electrical Connections		3 knockouts for 1/2" conduit				
Standards/Ratings		CE, IEC 60957.5.1, UL 508, CSA 3211-03				
Temperature Ratings		Minimum			Maximum	
Ambient		$-23^{\circ} \mathrm{C}\left(-10^{\circ} \mathrm{F}\right)$			$+85^{\circ} \mathrm{C}\left(+185{ }^{\circ} \mathrm{F}\right)$	
Media	phragm	$-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$			$+120^{\circ} \mathrm{C}\left(+250^{\circ} \mathrm{F}\right)$	
		$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$				
	with Form Q4	$-26^{\circ} \mathrm{C}\left(-15^{\circ} \mathrm{F}\right)$				
Operating Curves		Contact Blocks				
		DPST			Acceptable Wire Sizes: 8-14 AWG Recommended Terminal Clamp Torque: 22-27 lb-in	

For other ratings and specifications, see page 8/82.

Available Modifications for 9016GVG Vacuum Switches	Form
Description 3-way lever plus nameplate with marking: Float only—Vacuum and Float—Continuous (factory modification only) E Mounting bracket (for retrofit, order 9049A53 bracket kit) F Reverse action, normally open contacts R $1 / 4$ in. male pipe connection (1/4"-18 NPT, external thread) (for retrofit, use 1/4" pipe nipple) Z	

Machine Tool Pressure Switch Dimensions

9012 GAW, GDW, GKW 1, 21

A: Conduit connection: G•W = 1/2-14 NPT; G•WM = 20mm BS4568, Form M12 = Pg13.5; DIN40430.
B: Pressure connection: G•W = 1/4"-18 NPTF; G•WM $=8$; Form M14 = G 1/4 BS 2779;
RP1/4 ISO 711; R 1/4 DIN 2999; GJ 1/4 UN1339.
9012 GAW, GBW, GCW, GDW, GEW, GFW, GKW, GLW, and GMW (except GAW, GDW, GKW 1, 21)

NOTE: Dimensions change with metric thread.
For flange and mounting bracket dimensions for low pressure device, see figure on page 99.

Type	Dimension A, in. $(\mathbf{m m})$
GAW, GDW, GKW 2, 4, 5, 6, 22, 24, 25, 26	$2.33(59)$
GBW, GEW, GLW 1, 2, 21	$2.23(57)$
GCW, GFW, GMW 1, 2, 3, 4, 21,. 22, 23, 24	$3.15(80)$

9012 GGW, GHW, GJW (Differential-Pressure)

Types GAR, GBR, GCR, GDR, GER, and GFR

Dimension A for $G \bullet R$ Switches

Type	Dimension A, in. (mm)
GAR1, 2, 21, 22	$2.02(56)$
GAR4, 5, 6, 24, 25, 26	$1.42(36)$
GBR1, 2, 21, 22; GCR1, 21	$1.32(34)$
GCR2, 3, 4, 22, 23, 24	$2.24(57)$
GDR1, 2, 21, 22	$2.02(56)$
GDR4, 5, 6, 24, 25, 26	$1.42(36)$
GER1, 2, 21, 22; GFR1, 21	$1.32(34)$
GFR2, 3, 4, 22, 23, 24	$2.24(57)$

9012G and 9016G
Industrial pressure and vacuum switches 9012G pressure switches

Types GNO, GRO

Dimension A for G•O Switches

Type	Dimension A, in. (mm)
GNO, GRO 3, 4, 5, 6	$1.41(36)$
GPO, GSO 1, 2, 3	$1.31(33)$
GQO, GTO 1, 2, 3, 4	$2.24(57)$

Types GNG1, GRG1

Types GNG, GPG, GQG, GRG, GSG, and GTG

Dimension A for G•G Switches

Type	Dimension A, in. (mm)
GNG, GRG 3, 4, 5, 6	$1.41(36)$
GPG, GSG 1, 2, 3	$1.31(33)$
GQG, GTG 1, 2, 3, 4	$2.24(57)$

9012G and 9016G

Industrial pressure and vacuum switches 9016G vacuum switches

Vacuum Switch Dimensions and Modifications

9016GAW Control Vacuum Switches—Dimensions

9016GAW Vacuum Switches—Available Modifications

Description	Form
Mounting feet (GAW 1, 21 only)	F
Viton ${ }^{\circledR}$ diaphragm with \#316 stainless steel flange	Q4
Range scale window (standard with Forms K and K1)	V1
Special setting specified (If indicating only one special setting, specify whether this setting is on increasing or decreasing pressure.)	Y1
$1 / 4$ "-18 NPT external thread pressure connection	Z
$1 / 2$ "-14 NPT external thread, $1 / 4$ "-18 NPTF internal thread pressure connection (standard actuator only)	Z16

9016GVG Power Vacuum Switches-Dimensions

9016GVG Vacuum Switches—Available Modifications

| Description
 3-way lever plus nameplate with marking: Float only—Vacuum and Float—Continuous
 (factory modification only) | Form |
| :--- | :---: | :---: |
| Mounting bracket (for retrofit, order 9049A53 bracket kit) | E |
| Reverse action, normally open contacts | F |
| $1 / 4$ in. male pipe connection (1/4"-18 NPT, external thread) (for retrofit, use $1 / 4$ " pipe nipple) | R |

NOTE: For renewal parts, see page 98.

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

Schneider Electric USA, Inc. 1875 Founders Drive
Dayton, Ohio 45420
(800) 435-2121
www.tesensors.us

Schneider Electric Canada,

Inc.
5985 McLaughlin Road
Mississauga, Ontario L5R 1B8
(800) 435-2121
www.tesensors.ca

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein.
Schneider Electric, Square D, Telemecanique, OsiSense, and Simply easy! are trademarks owned by Schneider Electric Industries SAS or its affiliated companies. All other trademarks are the property of their respective owners.
9012CT9701R06/13 August 2013 © 1998-2013 Schneider Electric. All Rights Reserved. Replaces 9012CT9701R04/09 dated 10/2009

[^0]: (1) Figures shown are total displacement. When the switch is operated between settings only, displacement is $1 / 3$ of the values shown.

[^1]: Example: $1 \mathrm{bar}=14.50 \mathrm{psi}=10^{5} \mathrm{~Pa}$

[^2]: Other versions
 For switches with alternative tapped cable entries, consult the Customer Care Center.

[^3]: For switches with alternative tapped cable entries, consult the Customer Care Center.

[^4]: Other versions

[^5]: Other versions
 For switches with alternative tapped cable entries, consult the Customer Care Center.

[^6]: Other versions For switches with alternative tapped cable entries, consult the Customer Care Center.

[^7]: Other versions
 For switches with alternative tapped cable entries, consult the Customer Care Center.

[^8]: Other versions For switches with alternative tapped cable entries, consult the Customer Care Center.

[^9]: Other versions For switches with alternative tapped cable entries, consult the Customer Care Center.

[^10]: Other versions
 For switches with alternative tapped cable entries, consult the Customer Care Center.

[^11]: Other versions
 For switches with alternative tapped cable entries, consult the Customer Care Center.

[^12]: Other versions For switches with alternative tapped cable entries, consult the Customer Care Center.

[^13]: Other versions For switches with alternative tapped cable entries, consult the Customer Care Center.

[^14]: Other versions
 For switches with alternative tapped cable entries, consult the Customer Care Center.

[^15]: Other versions
 For switches with alternative tapped cable entries, consult the Customer Care Center.

[^16]: $\varnothing: 2$ elongated holes, $\varnothing 5.2 \times 6.7$

[^17]: Note: Control Circuit Rating: A600

[^18]: Acceptable wire sizes:
 12-22 AWG Recommended terminal clamp torque: 7 lb -in
 (1) The differential adds to the range setting and determines the operating point on rising pressure.
 (2) To order a Pg13.5 electrical conduit entry and a 1/4"-19 BSP pressure connection, add M12 to the end of the catalog number, as well as adding "M" after "W" for metric threads. For example:
 9012GAW1 = 1/2" NPT electrical conduit entry
 9012GAWM1 $=20 \times 1.5 \mathrm{~mm}$ electrical conduit entry and $1 / 4^{\prime \prime}$-19 BSP pressure connection 9012GAWM1M12 $=$ Pg13.5 electrical conduit entry and 1/4"-19 BSP pressure connection

